$\frac{1}{2}$

الرياضيات الأساسية

الصف الثاني عشا

الفصل الدراسسي الأول كتاب|||||با

$$
1445 \text { هـ - } 2023 \text { مז }
$$

الرياضيات الأساسية
الصف الثاني عشـر
الفصل الدراسي الأول

CAMBRIDGE UNIVERSITY PRESS

مطبعـة جامعة كامبريـدج، الرمز البـريدي CB2 8BS، الممـلكة المتتحدة.

 الططـعـة التتجريبـيـة Y.Y م، طوبعت في سلطنـة عُمـان

هذه نسـخة تمَّت مواءمتها من كتاب الطالب - الرياضيـات للصف الثاني عشـر - مـن سلسـلة - A Level Pure Mathematics 1 \& Cambridge International AS كامبريدج للمؤُلف سو بهبرتن.

$$
\begin{aligned}
& \text { تمَّت مواءهـة هـا الكتاب بناءً على العقد الثُوقَّع بين وزارة التربيـة والتتعليهر ومطبعة } \\
& \text { جامعة كامبريدج. }
\end{aligned}
$$

الهستخحدمـة في هـذا الكتاب، ولا تؤكد أن الهـحتوى الوارد على تلك الهـواقع دقيق
وهـالائم، أو أنهـ سيبقى كذلك.

تـنَّت مواءهـة الكتاب

 ولا يـجـز طبـع الكتتاب أو تصويره أو إعادة نسـخـه كامـلا أو مـجـزاً أو تـرجـمتـه
أو تـخزيـنه في نطاق اسـتعادة المععلوهـات بهـلـف تـحـاري بأي شـكل هـن الأشكال
إلا بإذن كتابي هسبـق هـن الوزارة، وفي حـالة الاقتبـاس القصيـر يـجـب ذكر الهصـلـر.

حضـرةصـاحبالجـلالـة
السلطان هيثمربنـطارق المعظمر
-حفظهاللّهورعاه-

المغفور لـa

السلطانٌ قابوسبنستسعيد
-طيّباللّهثراه-

وَالشَّعْبَبْ فـي الأَوْطــان ن

 ياعُمانُ نَحْنُ مِنْ عَهِِْ النَّبي وَامْلَئي الْكَـــوْنَ ضيـاء فـــرْتُقـــي هــــامَ السَّمـاء

وَاسْعَديوَانْعْمي بالرَّخَاء

تْتٌديم

الحمد لله رب العالمين، والصـلاة والهـلام على خير المرسلين، سيّدنا هُحمَّد، وعلى آله وصحبـه أجمعين. وبعد:

فقّد حرصت وزارة التربية والتعليم على تطوّير المنظومـة التعليمياة في جوانبها وهـجالاتها المهختلفة

 في هجالات التنمية الثنـاملة للسلطنة. وقد حظيت المناهـج الدراسية، باعتبارهـا مكوِّاً أسـاسيَّا من مكوّاتات المنظومـة التعليمية، بمراجعة
 وأسـاليب التقويم وغيرهـا ؛ وذلك لتتتاسبـ هع الرؤية المسستقبلية للتعليمر في السلطنـة، ولتتوافق هـع فلسفتاه وأهدافهـه .

وقد أولت الوزارة هجال تدريس العلوم والرياضيات اهتمـماءًا كبيرًا يتلاءم هـع مستتجدات التطور

 الطلاب، وتعميق فهمر للظواهر العلمية المختلفة، وتطوير قدراتهم التـافُسية في المسـابقات العلمياة والمعرفية، وتحقيق نتائج أفضل في الدراسـات الدولياة.

 ورسوهات. وهو أحد مصادر المعرفة الداعمة لتعلّم الطالب، بالإضافة إلى غيره من الهصادر المختلفة.

 حضرة صاحب الجـلالة السلطان هيثم بن طارق المعظم، حفظه الله ورعاه.
واللّه ولي التوفيق

د . هـديـحـة بــت أحمـد الشثيبـانيـة وزيـرة التـربيـة والتـعليـم
\qquad

المحتويات

الوحدة الثالثة: المتغيرات العشوائية المتقطعة (المنفصلة)

$$
V_{r}
$$ rVV C التوزيع الاحتمالي للمتغيّر العشوائي الهتقط NY 19 تمارين مراجعة نهاية الوحدة الثالثة

91

 مصطلحات علمية\qquad

المقدمة

يُعدّ فهم علم الرياضيات والقدرة على العهل به ههارة حياتية مههـة، إضافة إلى أن كثيرًا من الوظائف تتطلب فهًُا رياضيًّا جيدًا • فكلنا نستخدم علم الرياضيات في أسـاسيات حياتتا اليومية، حيث إنتا نستخدم معرفتتا الرياضية في تحديد الميزانية عندما نخطط لعطلة، وفي تصميم غرفتتا لهعرفة حاجتها إلى الطلاء لطلانئها، أو حتى عند تعديل وصفة طبخ لتكفي عددًا أكبر من الأشخاص.

إضـافة إلى هذه المهارات الـحياتية، يساعد علم الرياضيات الفرد على تطوير منهجية خاصـة للتفكير، بها في ذلك تطوير مهاراته في حل الهســألة ومهاراته في أي عمل آخر يقوم باه.
 الناس حاروا في شـأنها ـ وقد ترغب في أن يكون للك رأي خاص حول هذه الإشثكالية، التي ستشههد على تطورهـا هـع تقدمك في دراسـة هذا الكتاب. إحدى الأفكار المـحتهلة أن المسـألة الـرياضية هي عبارة عن سـؤال رياضي
 أسـاليب وأفكار متعددة، بهفردك أو بالتشـارك هـع الآخرين، حتي تتوصل إلى طريقة حلها . سيساعدك هـا الكتاب في تعلم مبادئ الرياضيات اللازمهة لإجراء الاختبارات وتطوير مهاراتك في حلّ المسـألة وفي حل مسـائل تتعلق بهواقف من الحياة اليومية.
 ستتهكن من التواصل باستخدام الرياضيات. وهـا يعني عرض الـحلول بخطوات واضحـة بحيث يتهكن أيّ شخخص

 ويسـاعد زمـلاءك على تطوير مهارة الإقتاع بالحـجة والبرهـان.

التهثيل الرياضي يعبر عن التقاء الرياضيات بالعالم الحقيقي، حيث تسهح لنـا هذه التمثيـلات الرياضية بالتوقع وفهم أفضـل للواقع إن تهثيل ظواهر الحياة اليومية باستخدام الـجبر يسـاعدنا على القيام بتوقعات وعلى مقارنتها

 والتغير المناخي، والتغير الديموغرافي (السكاني)، والأسواق المـالية وغيرهـا .

يحتوي هذ الكتاب على مـجهوعة هتتوعة من الميزات الـجديدة، من أجل دعمـك في عملية التعلمه، منها : نشاطات استكتف: تم تصهيم هـه الأنشطة لتقديم مسـائل للاستخدام في الفصول الدراسية التي تتطلب التفكير والهناقتشات . فقد يقدّم بعض الطلبة فكرة جديدة، ويقوم بعضه الآخر بتوسيع أفكار زميله وإثرائها،
 صغيرة، ثم مشاركة الأفكار هـع الجـميع. ههذه الطريقة تبعد الملل والرتابة عن الطلبة، وتعمـد إلى تطوير مهارات حل الهسـائل وبناء الثقة في التعامل مـع الأسـئلة غير المـألوفة.
 ’حل الهسـائل'، وهي مصمهـة لهسـاعدتك في التحضير الجيد على الأسلوب الالجديد في الاختبارات. وربهـا لا

التهـارين الهتتوعة الكثيرة التي تساعد الطلبة على تكرار الأهداف الهعروضة في الدرس، وقد جاءت هذه التهارين في معظم الأحيان متدرجة من السهل إلى الصعب حيث يستطيع الطالب المتلالك الهو الهفهوم في بدايتها، ثم يقوم بالتحليلات الرياضية الهطلوبة عند الانتهاء منها .
تَستخدم لغة الأقسـام التوضيتحية عبارات مثل ’نحن' و 'لنا' و 'لدينـا' ... أكثر بكثير مهّا كانت عليه في الكتـب
 مـا عليك سوى اتباع التعليمات ('فم بتنفيذ ذأك، ثمر تنفيذ ذلكَ' ...). فهي الطريقة التي يكتب بها علماء
 الرياضيات، فستككون لديك فرصـة أفضل لتصبح قادرًا على التعـامل هـع هذه التحديات بنجاح.
توجد أيضًا في أقسـام متتوعة من الكتاب، روابط إلكترونية لمصـادر الرياضيات ذات الصلة، والتي يهكن تصذّحها على موقع الإنترنت الهـجاني undergroundmathematics.org . يهـدف الموقت Uunderground Mathematics إلى إنتاج مواد غنية ومشوّقة لجهيع طلبة الرياضيات و وتتّصف هذه الموارد عالية الـجودة بالقدرة على تطوير مهارات التفكير الرياضي لديك، وبوفرة التقنيات في وقت واحد، للذلك نشـجعك على الاستفادة منها بشكل جيد . ونحن إذ نتهنى لك كل النجاح، نرجو أن تكون بداية في هذا الكتاب انطلاقة جيدة نـحو مزيد من التقدم.

كيفتستخدم هذا الكتاب؟

سوف تلاحظ خلال هذا الكتاب ميزات خاصة تم تصهيهها لتسـاعدك على التعلم. يؤمن هذا القسـم صورة مـختصـرة لهذه الميزات.

	هعرفة		
المتغير العشوائي Discrete random variable التوزيع الاحتمالد probability distribution \|القيهة المتوقعة2 expectation \| Variance اتجباين	اختبر صهار\|1		المصدر
	 الثرقَم 7 عند زهـي حجّر نرد 	تحسب احتهال حـدث كهر أوـو عدد عشّري أو نسبة مُؤوية.	 الوحدة الـاشاشرة والوحدة عشرد
	الثرقهين الظأهرين يساوياوي 	أن انهتهال أي حدث $\text { أي (} \mathbf{~}$	
	الكيسن، ثهي يقوم هن غير أن يرجبها باختيار كرة أخرى من	هو تقدير للاحتاتهالـ	
	الكيسن.	تحسب احتهال آحداث	

معرفة قبلية: تهـارين حول مواضيع تعلمتها سـابقًا وتحتاج إليها قبل البدء بدراسـة هذه الوحدة. حاول حلـ حل التمـارين لتحددد المسـاحات التي تحتاج إلى مراجعتها قبل تكهلة الوحدة. المفردات: هي مصطلحات مههة ستتعلّمها داخل الوحدة.

مسـاعدة: مريعات تتضمن نصـائح وإرشـادات مضيدة حول
الحسـابات أو التحقّق من الإجابات.

يوجد في كل وحدة تهـارين متعددة تتحتوي على أسئلة تدريبية . تم تثنير هذه الأسئلة كالآتي: تركز هذه الأسئلة على حل الهسـائل. تركز هذه الأسئلة على البراهين. تركز هذه الأسئلة على التهثيل. (7) يجب ألّا تستخدم الآلة الحاسبة عند حل هـن الانـ الأسئلة.
人 هِ هذه الأسئلة مأخوذة من اختبارات سـابقة.

تمـاريـن مـراجعـة نهـايـة الوحـدة تحتوي مراجعة نهاية الوحدة على أسئلة تحاكي الاحتيار

عنـ نهاية كل وحلدة، توجـ قائمـة تحقق مـن التتعلـم
 في الوحدة. يهـكنك اسـتخدامهـا بلتحقق بسـرعة هـن أنك اكتسـبـت الهـوضوعات الرئيسيـة . تغطي جهيع الهوضوعات في الوحدة. يمكنك استخخدام هذه الأسئلة للتحقق هن فههـك بلموضوعات التي درستها .

تمارين هراجهة نهاية الوحدة الثالثة

الوحدةlأأولى الأسسواللوغاريتماتالطبيعية

Exponentials and natural logarithms

سـتتععلـم في هـنـه الٌوحـلـة كيـ:
 الثطبيعي هـ
r-1 تستتخدم الـحاسبة في إيجاد هـ ـم، لط س
 1-1 تفهم أن الدووال الأسّية والدووال اللوغاريتمية (لأي أساس) هي عكسية، وتفهم تمثيلهما البياني. 1-0 تستخدم الثلوغاريتم الُطبيعي لتتحويل دالة معطاة ص = ك سن، ص = ك إيجاد أعداد ثابتة مجهولة من خلال استخدام الميل و/أو المقطع الصّاديا

المفردات

 اللوغاريتتمات الطبـيعيـة natural logarithmsالا'سـاس الططبيـعي هـ natural exponentiale

الـدا لـة اللـوغاريتمـيـة
الطبـيعيـة natural logarithmic function

الـالـالة الأسّـيـة الطبـيعيـة natural exponential function الصـيغة الأسّيـة ثلأسـاس هـ exponential form of base e

الصيغـة اللوغاريـتمـيـة لـلأسـاس هـ logarithmic form of base e

المـعادلة الأستـيـة
الطبـيعيـة natural exponential
equation
المعادلة اللوغاريتـمـيـة
الطبيـعيـة
natural logarithmic equation

الصيغخة اللخطيـة
linear form

äبٌ		
اختّبـر مهارانتك	تعلمـت سـابقًا أن:	الإهصل-3
(1) (1) منزل قيهته الحالية الهتوقع أن تزداد قيهته بنسبة \% \% سنويًا على مدى السنوات الأربع القادمـة. مـا هي قيهـة هـا الهنـزل، لأقرب • ا ريالات عمـانية، بعد ع سنوات؟ ارسـم رسـهـا بيانيًا يهـثل قيهـة الهنزل خـلال فترة ع سنوات.	تفهـم وتحسـبـ اللنهو الأسّي تججد معكوس دالة بسـيطة. تجـد اللدوال العكسـية. .	الصف التاسـع (الوحدة الـخامسـة عشـرة) الصف العاشـر (الوحدة الثامنة)، الصف الحادي عشـر (الوحدة الثانية)
	تحوّل بين الصيغة الأسّية والصيغنة اللوغاريتمية.	الصف الحادي عشر (الوحدة السـادسـة)
戊	تسـتخـدم قوانين الآسس والللوغاريتهـات.	الصف الحـادي عشـر (الوحدة السـادسـة)

لماذا ندرس الأسس واللوغاريتمات الطبيعية؟
تعلّهت في الصف الححادي عشـر الأسس واللوغاريتـمات النتي استخخدمت أسـاسـات عددية
 -
 تـجـد في الاحاسـبـة أيضًا هفـاتيح أخخرى للوغاريتــات والقوى، مثـل مضتاحَي الاحرف e عددًا غير نسـبي يعرفهه بعضهه بعدد أويلر Euler’s number نسـبـة إلى العالمّ ليونـارد أويلر؛ ويعرثه آخرون بـالعدد الثيبيري Napierian number، نسـبـة إلى العالـم جون نابيـر John Napier اهتهـام دراسـتـا في هـذه الوحدة.
 النتهو والاضهـحـلال الطبيعيين، كهـا يبـز في دراســة الفائدة الـهركبـة، وفي حل الـهعادلات

ا ـ ا الدالة الأسّية الطبيعية

الأساس الطبيعي(هـ)
تعلهت سـابقًا الصيغة الأسّية أس" ، حيث يسهى أ بالأسـاس، وتسهى س بالأس (القوة). بالتعويض في الصيغة الأسّية ألّ عن قيهـة أ بعدد أويلر (هـ) والذي يهثل القيهـة التقريبية

الطبيعي

 فنحصل على الناتج \& , \& مقربًا إلمى أقرب منزلة عشرية.
|ستكشُ \mid

$$
\begin{aligned}
& \text { كلها كبرت قيهـة ن، اقترب الناتج أكثر مـن القيهـة التقريبية لـ هـ }
\end{aligned}
$$

تجد في الجدول أدناه قيمر(1 + 1 (1)) ، مقرّبة إلى أقرب خهس منـازل عشـرية، لبعض قيم ن أصغر من أو تسـاوي . 1

1..	1.	1	$\cdot, 1$	j
${ }^{\prime \cdots}, \cdot 1={ }^{1 \cdots}\left(\frac{1}{1 \cdots}+1\right)$	1.1.1 $=10\left(\frac{1}{10}+1\right)$	${ }^{\prime} r={ }^{\prime}\left(\frac{1}{1}+1\right)$	$\cdots 11=\left(\frac{1}{\cdot, 1}+1\right)$	($\left.\frac{1}{0}+1\right)$
$Y, V \cdot \varepsilon \wedge 1$	Y. O9TVE	Y	1, rv.91	تقريـبـ هـ
يقترب الناتج من القيمـة التقريبية لـ هـ				

$$
\begin{equation*}
\text { تلاحظ أن قيمة (1 }+1 \frac{1}{ن} \text { تتزايد كلمـا تزايدت قيمن } \tag{i}
\end{equation*}
$$

مـ هي القيمة النهائية التي وجدتها لـ (1 + 1 (1 ، مقرّبة إلى أقرب 0 منازل عشرية؟
القيمة النهائية التي وجدتها هي تقريب لقيهة عدد أويلر هـ، مقرّبة إلى أقرب ه منازل عشـرية.

يهكن تطبيق قوانين القوى التي تعلمتهـا سـابقًا على الأسـاس الطبيعي هـ
هـ ثـ ه هـ نـ = هـ ז +ن ن

$$
\text { هـ ثـ } \div \text { هـ ن = هـ ז - ن }
$$

1 مثـالـ
أكتب كاًلا من العبارات الآتية في أبسط صيغة أسية:

$$
\begin{aligned}
& \text { ع } \\
& \text { 7- }{ }^{7} \times^{19} \text { ه } \\
& { }^{r-} \text { ه } \rightarrow{ }^{r}{ }^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { استخدم هـ 「 } \\
& { }^{r} \Delta={ }^{\varepsilon-V^{\nu}} \Delta={ }^{\varepsilon} \Delta \div{ }^{\gamma} \Delta \\
& { }^{1 r} \Delta={ }^{7}-19 \rightarrow=(7-)+19 \rightarrow={ }^{7-} \Delta x^{19} \Delta \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الستختـنم هـه } \\
& \text { ه }
\end{aligned}
$$

هـ استخخدم هذه القيم لإيجاد قيهـة الهقادير الآتية، مقربًا الناتج لأقرب عـد صـد صحيح:
استخخدم هـ
${ }^{r+\Lambda_{-}}={ }^{\prime \prime}$ ه i
${ }^{r} \rightarrow x^{\wedge} \rightarrow=$
$r \cdot x$ Y911 $=$
$097 \%=$

r
استخدم الحاسبة لإيجاد القيم الآتية، مقربة إلى أقرب ثلاث منازل عشرية.

$$
\begin{align*}
& \text { r, il } \\
& { }^{1-} \text { ه } \\
& \text { r, ج } \\
& \xrightarrow[\Delta]{\text { IT }} 2 \\
& \rightarrow \\
& \text { الحــلّ: } \\
& =3.7 \mathrm{e}^{x} \text { هـ } \tag{i}
\end{align*}
$$

$$
\begin{aligned}
& =2.5+/ \mathrm{e}^{x} \text { استخخدم المفاتيح }
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{e}^{x} \sqrt[3]{ } \cdots 1, r 97=\square
\end{aligned}
$$ الهنتاح

 العـد سانبًا . بعض التحاسبات تتضمن مفتاح المجـنر التكعيبي
 كحل الجزئية هـ.

آو

$$
=(3 \div 1) \mathrm{e}^{x} \text { المفاتي }
$$

الدالة الأسّية لالأساس الطبيعيهـ

$$
\begin{aligned}
& \text { صيغة الدالة الأسّسية هي د (س) = أ } \times \text { ب بّ ، حيث أ، ب ثـابتان، } \\
& \text { مثل د (س) = }
\end{aligned}
$$

يبيّن التهثيل البياني الآتي الدالة الأسّية الطبيعية د(س) = هـ

لاحظ أن الهنحنى لا يـلامس ولا يقطع الهتحور السيني أبدًا • يبيّن هذا الأمر إحدى أهـم خصائص الدالة الأسّية الطبيعية، وهي أن د (س) \gg لـكل قيم س

ارسم خطًا رأسيًا من س = Y , • إلى الاْعلى باتجاه

$$
0=N^{\omega r} \Delta r^{r}
$$

المنتحنى، واقرأ قيمـة זاهـ بس على المتحور الصـادي
ارسم خطُ أفقيًا من ص = • ب بـاتجاه المنحنىى،
-90 =
واقرأ قيمة س على المـحور السينـي

$$
\begin{equation*}
1 \cdot=(\cdot, 7) \tag{ج}
\end{equation*}
$$

الهنحنى، واقرأ قيمـة د (7 , •) على الهـحور الصـادي الصي

تمارين 1-1

() استخدم الحاسبة لإيجاد القيم الآتية مقريًا الناتج إلى أقرب ثـلاث منازل عشرية:
r 1
-^
$\stackrel{\frac{T}{r}}{\Gamma}$ ه $ه$

$$
\begin{aligned}
& \text { r, re } \\
& \text { 1, ro هـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { •, YO = }=\text { r ror }
\end{aligned}
$$

$$
\begin{aligned}
& (\cdot, 7) \perp \text { ? } \\
& \text { الحــّ: }
\end{aligned}
$$

(Y) استخدم الحاسبة لإيجاد القيم الآتية مقريًا الناتج إلى أقرب ثالاث منازل عشـرية:

ץ) استتخدم الحاسبة لإيجاد القيم الآتية مقربًا الناتج إلى أقرب ثلاث منازل عشرية:

$$
\rightarrow \text { (1) }
$$

$$
\frac{1}{\stackrel{r}{\Delta v}}
$$

$$
{ }_{-}^{r-}-_{-}^{r-} \Delta
$$

£) يبيّن التهثيل البياني أدناه منحنى الدالة د (س) = هـ سن في الفترة -r

استتخدم التهثيل البياني لتقدير القيم الآتية مقربة إلى أقرب منزلة عشرية واحدة:
$(\cdot, \vee-) د(\varepsilon$
$(\cdot, r-) د(r$
$(1, V) د(r$
$(Y, Y)>(1$
ب استخخدم التمثيل البياني لتقدير قيمة س ، مقربة إلى أقرب منزلة عشرية واحدة، حيث:
$\cdot, 7=(س) د(r$
$0,7=(\mu)$
$\varepsilon={ }^{\prime}$ (1)

$$
\begin{aligned}
& \text { rat ب } \\
& { }^{r}{ }^{r}+{ }^{r}{ }^{r}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{r-} \text { ه } 1 \\
& \text { 1,i- } \\
& \frac{\varepsilon^{5}-}{}{ }^{-} \text {ه } ه
\end{aligned}
$$

©）استخدم القيم التقريبية هـ
عدد صـحيح： なッタ（

٪）يبيّن التهثيل البياني أدنـاه منحنى كل من الدالة د（س）＝هـ سن والـدالـة ك（س）＝هـ－س في الفترة $r, 0 \geqslant m \geqslant r-$

$$
\begin{aligned}
& \text { استتخدم متباينة للتعبير عن قيم س التي تحقق: } \\
& \text { (} \\
& \text { (س) }
\end{aligned}
$$

ج صف باختصـار التحويل الوحيد الذي يـحوّل ص = هـ ــ إلى ص = هـ -س

 د (س) = لــو س حيث اللوغاريته.
وعند استتخدام عدد أويلر (هـ) كأسـاس للوغاريتم في الدالة اللوغاريتمية بحيث تكون
 توجد العديد من دوال اللوغاريتم الطبيعي الهمبنية على دالة اللوغاريتم الطبيعي
 د (س) = 1 (1 لـط س لإيجاد قيهـة اللوغاريتم الطبيعي لطب باستتخدام الحاسبة يتم الضغط على الهفاتيح (لألقرب منزلة عشرية. 2 ln
-
استخدم الدحاسبة لإيجاد القيم الآتية، مقربًا الناتج إلى أقرب ثْلاث منازل عشرية

ب
+

الحــلّ:
باستخخدام المفاتيح
$=1 \mathrm{e}^{x}+0.5 \ln$ باستخدام المفاتيح \cdot • $\cdot \mathrm{r} \cdot \mathrm{V}=$

$$
\begin{aligned}
& \wedge+11={ }^{\wedge} \omega^{\wedge}+{ }^{11}+\omega^{19}= \\
&=8 \ln \mathrm{e}^{x}+11 \ln \mathrm{e}^{x}
\end{aligned}
$$

$$
r-0=r^{r} \Delta \operatorname{l}^{0} 0^{0} \text { هـ } 2
$$

$$
r=
$$

$$
=2 \mathrm{e}^{x} \ln +5 \mathrm{e}^{x} \ln
$$

يهكن تطبيق قوانين اللوغاريتم التي تعلمتها سـابقًا على اللوغاريتهـات الطبيعية .

1 مثــال 7
بدون استخخدام الحاسبة أوجد ناتج:
باستخدام 'ـط هــَ = أ

$$
r, r-0, r=r, r \text { هـ }
$$

$$
1,9=
$$

باستخدام 'ـط هـ أ = أ وقانون القوة

$$
q+Y \wedge=
$$

$$
r v=
$$

باستخدام قانون الضرب:
'ـط س ص = لط س + 'ـط ص

$$
\left(\frac{V}{r} \times \frac{r}{V}\right) b t=\frac{V}{r} h^{\prime}+\frac{r}{V} \omega t
$$

$$
\mid \mathrm{bl}=
$$

$$
\begin{align*}
& \text { + } \tag{ب}\\
& \frac{V}{r} h+\frac{r}{V} \omega t \\
& \text { ? }
\end{align*}
$$

استكُشف

1) انسـخ الـجدول المعطى واستخدم الحاسبة لتجد القيم الناقصـة مقرّبة إلى منزلتَين عشـريتَين. استخخدم العـلامة (-) لتتثير إلى القيم غير الهوجودة.

0	ε	r	r	1	\cdot	$1-$	$r-$	$r-$	μ
				\cdot					w
					1				$\omega \rightarrow$

 (r اكتب جهلة قصيرة لوصف التزايدات في قيهتَي كل من لـط س ، هـ س

يبيّن التمثيل البياني أدناه دالة اللوغاريتم الطبيعي د (س) = لـط س

لاحظ أن الهنحنى لا يلامس ولا يقطع الهحور الصـادي أبدًا ، يبيّن هذا الأمر إحدى أهم خصائص دالة اللوغاريتم الطبيعي، وهي أن الدالة معرفة لقيم س \gg وقطط. يلخص الجدول أدناه هذه الخاصية وخصـائص أخرى لدالة اللوغاريتم الطبيعي.

مـاذا يعني هناه	قيمـة لطس	قيمهة س
لـط س غير معرفة لقيمس السـالبة	ليس نها وجود	- > س
'لـط س غير معرفة عند	ليس نها وجود	-
كلمـا اقتربت قيهـة س من الواحد اقتربت ڤيهـة لـط س	-	$1>\mathrm{m}$ >
- =	'بط =	س =
كلمـا زادت قيهـة س تزيد قيهـة لــ س	لط	س

استكشفض

التهثيل أدناه لهنحنيَي ص = هـ سن ، ص = لـط س

ناقشش واكتب مع زميل لك ما تلاحظه عن هذَين الهنحتيَين (يمكتك البدء بالهسـتقيم الهنقّط في التهثيل البياني)
ضمّن كتابتك مـا تلاحظه من تشـابهات أو اختلافاتات. استتتج العالاقة بين الدالتين الهمهثلتين في هذا التمثيل البياني.

قد تكون لاحظت في استكثشف ب أنه يهكن استخخدام المستقيم الهنقّط في الهـخطط (والذي يهثل ص = س) كخط تتاظر .
نعكس منحنى ص = هـ سِ حول الهسستقيم الهنقط، فيقع بشكل تام على منحخى ص = لـط س، والعكس صتيح.
المنحنيان (منحنيا الدالة الأسّية الطبيعية والدالة اللوغاريتمية الطبيعية) ههـا انعكاس أحدههـ لـلآخر حول الهستقيم ص = س

يعني هذا أن معكوس الدالة الأسّية الطبيعية هو دالة لوغاريتهية طبيعية، ومعكوس الدالة اللوغاريتهية الطبيعية هو دالة أسية طبيعية.

v

$$
\begin{aligned}
\text { أوجد هعكوس كل من هـاتين الدالتين: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اكتب ص مكان ع(س) } \\
& \text { بـّل ما بين س ، ص } \\
& \text { استخدم: إذا كان أ = ب ، فإن 'ط أ = 'لط ب } \\
& \text { استخخدم 'طـ هـ } \\
& \text { اكتب ع' } \\
& \omega^{\omega r} \text { هr }=(\omega) \varepsilon \text { i } \\
& \text { ص } \\
& \omega^{\infty} \\
& \text { "r } \\
& \text { لh } \\
& \omega \\
& \omega \operatorname{wh} \frac{1}{r}=(\omega)^{1-} \varepsilon \\
& \text { اكتب ص مكان د (س) } \\
& \text { د (س) = tho } \\
& \text { بدّل مـا بين س ، ص } \\
& \text { استخدم: إذا كان أ = ب ، فإن هـ ' = هــ بـ } \\
& \text { استخدم هـــــس = } \\
& \text { اكتب دـــ (س) مكان ص }
\end{aligned}
$$

$$
\begin{aligned}
& \text { س } \\
& \text { هـ } \\
& \text { مص = هـ } \\
& \text { ~ } \\
& \text { د د- }
\end{aligned}
$$

Y-1 تماريـن

() استخخدم الحاسبة لإيجاد القيه الآتية مقربًا الناتج إلى أقرب ثالاث منازل عشرية:
-9 9

٪) دون استخخدام الحاسبة، أوجد القيهـة الدقيقة لككل مهّا يأتي:
هـ هـ
§) يهثل التهثيل البياني الآتي منحنيي د (س) = لـط س ومعكوسها د-'(س) = هـ س

ا استتخدم الهنحنييَين لتقدير قيهـة كل من الآتي مقربًا الناتج إلى أقرب منزلة عشـرية واحدة:
1 1 (
lro (r
$\frac{1}{r} h^{1}(r$
(1) (1)

ب أُضيف مستقيم إلى التمثيل البيـاني أعلاه بحيث يهكن استخخدامـه لعكس منحنى ص = لـط س حتى يقع على منحنى ص = هـ ــ
مـا هي معادلة هذا الهستقيم؟

أي التمثيلات الآتية: أ ، ب، ج ، د ، هـ، يمكن أن يكون منحنى الثدالة ص = دــ' (س)؟

الدرالة المبيّنـة في التمثيل الأول هي دـ (س) الـي

تشكل الأسطر الأربعة الآتية الخطوات الأولى من الحل الذي كتبه، وهي خطوات صحيحة:

$$
\begin{aligned}
\text { () }
\end{aligned}
$$

() التمثيل البياني الآتي رسم دثيق لـجزء من منحنى الدالة ص = د (س) = هـ -س ، وجزء من منحني معكوسها ص = دـ

يرغب أحد الطلبة في إيجاد معكوس الدالة فكتب: اكتب ص مكان د (س)

> بدّل مـا بين س ، ص

إذا كان أ = ب، فإن لـط أ = لـط ب
i أكمل خطوات عمل الطالبب وحدد من الخيارات الآتية الخيار الذي يشكل الطريقة الصتيحة لكتابة معادلة معكوس الدالة:

ب استخخدم المنتحنيَن في التهثيل البياني لتقدير القيهم الآتية، مقرّبة إلى أقرب منزلة عشرية واحدة:

أوجد معكوس كل من الدووال الآتية:
د س) =
ج

$$
\text { م: س } \leftarrow
$$

$$
\begin{aligned}
& \text { ب ف (س) = لـط س } \\
& \text { r- هـ } \\
& \text { \& }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{r}{r-} \text { - }(r \\
& \left(\frac{1}{0}\right)^{1-2} \text { (} \varepsilon \\
& \text { (1,0-) د (} 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& \frac{1}{\omega} \operatorname{LI}^{\prime}=(\omega)^{1-} \text { (} \varepsilon \\
& \frac{1}{\omega+h!}=(1) \\
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { د(س) = هــ ـه } \\
& \text { ص = هـ ـه } \\
& \text { س = هـ ـــ } \\
& \text { لـط س = لـط هـ }
\end{aligned}
$$

ا ـ ا الصيغة الأسّية والصيغة اللوغاريتتمية للأساس هـ

تعلهت سـابقًا أنه توجد صيغتان لكتابة العـلاقات التي تتضهـن الأسس، وهـها الصيغة الأسّية والصيغة اللوغاريتهية.
وتعلمت سـابقًا أيضًا أن كاًلا من الصيغتين هي هعكوس للأخرى :

ويبيّن الهحطط الآتي العالاقة بين الصيغة الأسّية الطبيعية والصيغة اللوغاريتهية الطبيعية:

الصيغة اللوغاريتهية
الطبيعية
ةać
تذكر أن نطس س = لــرّ س

تبيّن العبارة ص = هـ س
إلى الصيغة اللوغاريتمية الطبيعية، وبالعكس كذلكك.
-
انتب ص = هـ r, ‘ في الصيغة اللوغاريتمية.
ب ب اكتب س بدلالة اللوغاريتم الطبيعي، حيث عهـ

$$
\begin{aligned}
& \text { الأساس هو هـ ، الأس Y, ، و والقيمة هي ص } \\
& \text { هـ } \\
& \text { I الأسانس هو هـ ، الأس س } \\
& \text { Y T L } \\
& \text { m }
\end{aligned}
$$

	9 ه\%
	اكتب الآتي في أبسط صيغة أسّية:
	(1)
	1r = retr (r
	الحـلّ:
الأساس هو هـ ، الأس با	
نأخذ الجذز التربيعي للطرفين.	${ }^{4}$ ق
	(${ }^{\text {a }}$

تماربين ات

$\varepsilon \frac{1}{r}=\varepsilon$?
$\frac{1}{\Delta}=\omega \quad ب$
س =
Y (Y) اكتب في الصيغة الأسّية الطبيعية:

$$
\begin{equation*}
ب \tag{1}
\end{equation*}
$$

v= لhل
(اكتب س بدلالة هـ، حيث:
$V={ }^{\prime}$

ب اكتب س بدلالة اللوغاريتم الطبيعي، حيث:

$$
r={ }^{\mu} \text { هـ (1) }
$$

$$
0=\omega r \text { هr } \frac{1}{r}(r
$$

1－؟ حل المعادلات الأسسية واللوغاريتمية الطبيعية

يهكن أن نستخدم أسلوب التحويل بين الصيغتين الأسّية واللوغاريتهية، بالإضـافة إلى قوانين
 لبعض الهـلاحظات الخاصة بكتابة اللوغاريتهـات، خصوصًا عندها تتضمن العبارة أكثر من

「 • لط（س＋＋＋تعني اللوغاريتم الطبيعي لهـجموع س لـط س＋

「 لـط س－Y تعني Y مطروحًا من لـط س، ومن الأوضح كتابته على الثنكل－Y＋لـط س

حلّ الـعـادلات الآتية، مقربًا الناتج إلى منزلة عشرية واحدة．

حوّل إلى الصيغة الأسّية

حوّل إلى الصيغة الأسّية
اضرب الطرفَين في 「

$$
1 \cdot=\frac{\omega^{r} ـ}{r} \text { ه }
$$

حوّل إلى الصيغة اللوغاريتمية
هـ
لط •

$$
r \cdot b \frac{1}{r}=w \therefore
$$

$$
1, v=
$$

$$
\begin{align*}
& \text { r = } \tag{i}\\
& \text { هـ } \\
& 0+{ }^{r}{ }^{r} \text { ه } \\
& \text { ro, } 1= \\
& r=\omega \omega+0- \tag{ب}\\
& \text { ل } \\
& \text { هـ } \\
& \text { rant }=\omega
\end{align*}
$$

$$
\begin{align*}
& r=(0-1) \tag{i}\\
& r=0- \tag{ب}\\
& \text { 1. = } \frac{\mu^{\mu r} \text { ه }}{r^{2}} \text { ? }
\end{align*}
$$

ب قرّب الناتج إلى أقرب عدد صحيح.

$$
\left(0 \cdot-^{r} \Delta\right) 7=س
$$

$$
(79,91-) \times 7=
$$ 1 1 9- =

$$
(0 \cdot-r \cdot, .9) 7=
$$

Ir

الحــلّ:

هـ هـN
هــN+

$$
\varepsilon=\frac{1+\omega^{\omega} \text { هـ }}{\omega^{\psi}}
$$

$$
\varepsilon=\omega^{\omega}
$$

$$
\varepsilon=\omega^{-1} \text { هـ }
$$

$$
\begin{aligned}
& \varepsilon \underline{L}=\left({ }^{\omega-1} \Delta\right) \frac{h}{} \\
& \varepsilon L \downarrow=-1+(v-1) \\
& \varepsilon \underline{L}=m-1 \\
& \text { 2Lh-1 = } \\
& \text { - }, r q_{-}=m
\end{aligned}
$$

$$
\begin{aligned}
& \text { فكَ الْقوس } \\
& \text { اقسم الطُرفَين على هــ } \\
& \text { الستخخدم هـ } \\
& \text { خذ اللوغازيتم الطبيعي للطرفين } \\
& \text { استتخدم قانون القوة } \\
& \text { استخخدم رُط هـ = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أو استخدم المضاتيح } \\
& \text { أو استخخدم الهفاتيح } \\
& =6 \times=50-3 \mathrm{e}^{x}
\end{aligned}
$$

$$
\begin{align*}
& r=\left(\frac{m}{7}+0 \cdot\right) \omega t+1- \tag{i}\\
& r=\left(\frac{m}{7}+0 .\right) \omega \\
& { }^{r} \Delta=\frac{w^{\prime}}{7}+0 . \\
& 0 \cdot-{ }^{r} \text { ه }=\frac{\mu}{7} \\
& \text { (} 0 \cdot-^{r}-1 \text { (هـ) }
\end{align*}
$$

1r

بأخذ اللوغاريتم الطبيعي للطرفَين
هـ rrw - r

باستخدام 'لط س ص = 'لط س + 'ـط ص
لـط هـ row - r

باستخدام لط هــ أ = أ
v+wـ

$$
V+w+\varepsilon h t=r-w r
$$

$$
\varepsilon \underline{\imath}+v+r=w
$$

لا نكتبها على الشكل س = لط ع + •

تمارين 1-غ

() دون استخدام الحاسبة، حلّ كلًا من الهعادلات الآتية:

- $=1 \wedge+w^{9}$ ع
$I=$ U \quad ب
$r=r^{\prime}$
(个) دون استخدام الحاسبة، حلّ كلًا من الهعادلات الآتية:

ه) حلّ المعادلات الآتية هقربًا الناتج إلى أقرب ثالاثة أرقام معنوية:

$$
\text { لـط س = } 0 \text { ب }
$$

() حلّ المعادلتين الآتيتين:

$$
\begin{align*}
& \text { r + }+ \text { ل } \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { r) حلّ الهعادلات مقريًا الناتج إلى أقرب منزلْتَين عشريتَين: } \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { §) حلّ الهعادلات الأسّية الآتية بدلالة اللوغاريتم الطبيعي: } \\
& I={ }^{1+\omega r} \text { ه } \tag{1}\\
& V=\omega^{\omega T} \text { ه } ب \\
& \text { M }
\end{align*}
$$

(Y حلّ المعادلات الأسّية الآتية بدلانة اللوغاريتم الطبيعي:
 ن عدد الأيام منذ ظهور أول حالة إصـابة: أوجد، مقريًا إلى أقرب عدد صحيح، عدد الأشخخاص الهصـابين بعد:
(1) أيام

Y (Y

ج من إجابتك للجزئية أ قارن عدد الإصـابات الجديدة خـلال فترة الـ • أيام الأولى مـع عدد الإصـابات الجديدة خـلال فترة الـ • ا أيام الثانية.

$$
\begin{align*}
& \frac{1-\omega r}{7}-{ }^{1-\omega r} \text { ه } ب \tag{1}\\
& \text { r+wـ }
\end{align*}
$$

ـ ــ تحويل علاقةة إلى صيغة خطية باستخدام اللوغاريتم الطبيعي

عندما نجهع بيانات تجرية من متغيّرَين، غالبًا مـا نـريد إيجاد عـلاقة رياضية تريط بين المتغيّرَين. عندما تقع البيانات المهوثلة بنقاط في تهثيل بياني على خط مستقيم، تكون العـلاقة عندئذ عـالاقة خطية، ويمكن بسهولة إيجادها باستخدام الصيغة العامة للمستقيم، ص = م س + جـ ، حيث م هو الميل، جـ هو الهقطع الصـادي
إلا أنه من المعتاد أن تقع نقاط البيانات على منحنى، عوضًا مـن خط مستقيم.
يهكن استتخدام اللوغاريتمات لتحويل بعض الهنحنيات إلى مستقيهات.

 يهكن استخـدام اللوغاريتهات من أي أسـاس للقيام بهذه التحويـلات، ولكن مـن الهعتاد استخدام الللوغاريتمات ذات الأسـاسـات الموجودة فعـًا في الحاسبات، وهي اللوغاريتم الطبيعي واللوغاريتم ذو الأسـاس • (وسنقتصر على اللوغاريتم الطبيعي في هـا اللـوس.

حوّل العـلاقة ص = س واكتب الميل والهقطع الرأسي للمستقيم الذي وجدتها.

تتحوّل الهعادلة غير الخطية ص = سّ
س~ = لـطـ س
ونحصل على خط مستقيم ميله م = ب والهقطع الصـادي جـ = •

مثـال 10

 ثم أوجد الهيل والهعطع الصـادي ．
خذ اللوغاريتم الطبيعي للطرفَين
قم بإعادة الترتيب

استخدم قانون القسهـة
استخخدم قانون القوة
قارن 'ـط ص = -0 نط س + 'طـ ع مـع
ص~ = م

تتحوّل المعادلة غير الخطية ص＝سِه إلى معادلة خطية في الصيغة

17 مثـال

أوجد الهيل（م）والهقطع الـرأسي（ج）لهنتحنى الهسستقيم الذي ينتج من تحويل

تتحوّل الهعادلة غير الخخطية ص＝r هـ
صم = لـطـ ص ، سم = س

نحصل علي خط مستقيم ميله م＝Y والهمقطع الصـادي جـ＝لـطـ

$$
\begin{aligned}
& \text { الحــلّ: } \\
& \text { صr = } \\
& \text { 仿 } \\
& \text { 佔 } \\
& \text { هـ } \\
& \text { r } \\
& r \underline{L}+\omega r=\omega \\
& : \text { - ~11 } \\
& \uparrow \uparrow \uparrow \uparrow \\
& \rightarrow+\sim \infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { خذ اللوغاريتم الطبيعي للطرفَين } \\
& \text { استخخدم قانون الضـرب } \\
& \text { الستخخدم قانون القوة } \\
& \text { استخخدم نـط هـ = ا وقم بإعادة الترتيب } \\
& \text { خذ النوغاريتم الطبيـعي للطرفين } \\
& \text { قارن نـ } \\
& \text { }
\end{aligned}
$$

في جهيع الأحوال، عند تحويل علاقة غير خطية إلى عالقة خطية في الصيغة صح = مس + جـ:
يجبـ أن يتضهـن الهتغيّران سى ، صح الهتغيّرَين الأصليَّين س ، ص فقط، ويجـب أن لا يتضمنا أيًا من الثوابت أ ، ب ، كَ ، ن

يجبـ أن يتضهـن الثابتان م ، جـ الثوابت الأصلية أ ، ب ، كَ ، ن فقط، ويجب أن لا يتضهنا أيًا من الهتغيّرَين الأصليَّينّن س ، ص

- 1 : 1

 (Y (Y) استخدم اللوغاريتم الطبيعي لتغيير كل من الصيغ غير الخطية الآتية إلى الصيغة صح = مسى + جـ (r حدد في كل حالة ما يهثله كل من الهتغيّرَين ص ، س ، واكتب القيهـة الدقيقة للنابتَين م ، جـ
ب ص = بس

个)
صح = مس~ + جـ

حدّد في كل حالة مـا يهثله كل من الهتغيّرَين صر ، سر ، وأيضًا مـا يهثله الثابتان م ، جـ بدلالة أ و/أو ب:
ب ص = أسب

$$
\begin{array}{r}
\text { ج }
\end{array}
$$

قامٔمة التحقّق من التعلّم وlالفهم

الصيختان الأسّية واللوغاريتمية:
إذا كان ص = هـ س ، فإن س = لالط ص - ص = هـ س هي الصيغة الأسّية الطبيعية.
قوانين القوى:

قوانين اللوغاريتم الطبيعي

- قانون الضـرب: لـط س ص = لـط س + لـط ص ص الط
- قانون القسـهـة: لـط صس
- قانون القوة: لـط أل" = س لـط أ

بالإضافة إلى:

$$
\begin{aligned}
1 & =\text { هـ هـ هـ }
\end{aligned} \text { • }
$$

- = 1 •
- $=\omega$ ه
$\frac{1}{\omega} h^{\prime}=h^{\prime}-\bullet$
الدوال ومعكوسات الدووال معكوس دالة أسّية هو دالة لوغاريتمية، ومعكوس دالة لوغاريتمية هو دالة أسّية.
إذا كان د (س) = هـ س، ، فإن د ــ (س) = لـط س
إذا كان ف (س) = لـط س ، فإن فـ' (س) = هـ س م منحنيا دالة ومعكوسهـا هــا انعكاس أحدههما للآخر حول الهستقيم ص = س

التحويل إلى الصيغة الخطية: بالنسبة إلى الثوابت أ ، ب ، ك ، ن: - يهكن تحويل العلاقة غير الخطية ص = ك أبّ إلى الصيغة الـخطية صح = مسح + جـ باستخدام
صح = لـط ص ، سح = س

- يـكن تحويل العالاقة غير الخطية ص = كـ سن إلى الصيغة الخطية صح = مسح + جـ باستخدام صح = لـط ص ، سح = لـط س الـ

تمارين مراجعة نهاية الوحدة الأولى

(1) حلّ المعادلة لـط (0س + غ) = لـط س + لـطـ
(r
r (r لـ ل

$$
\text { ب أوجد حلّ المعادلة بالط (س + r) = لط (س }+ \text { + } 10 \text {) }
$$

ه) الدالة د (س) = r هـ سَ - 0
ومعكوس هذه الدالة هو د ـ' (س) = لـط س + جـ ، حيث جـ عدد ثابت.
أوجد قيهـة جـ مقرّبة إلى أقرب منزلة عشريـة واحدة.
§) استخدم اللوغاريتمات الطبيعية لتغيير كل من العلاقات غير الخطية الآتية إلى الصيغة صح = م سر + جـ حدد في كل حالة مـا يهثله كل من الهتغيّرَين صح ، سح ، واكتب القيهـة الدقيقة للثابتَين م، جـ
(Y تحسب أعداد نوع من البكتيريا (ل) من خلال الهعادلة ل = أ × هـ ن + عدد البكتيريا لأول مرة.

إذا كان العدد الابتدائي للبكتيريا • عY، فبيّن أن أ = 17 1، مقرّبًا إلى أقرب عدد صتحيح. 1. 17λ = أوجد عدد الأيام الذي تستغرقه أعداد البكتيريا لتصل لأول مرة إلى ألى مـلايين.

$$
\begin{equation*}
\text { استخدم اللوغاريتم الطبيعي لتحويل الهعادلة ل = } 1 \text { × } 1 \text { هـ ن + } 1 \text { إلى صيغة خطية. } \tag{ج}
\end{equation*}
$$

$$
\begin{align*}
& \text { ص } \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \text { • = IV - V } \\
& \text { • = } 7 \text { - }{ }^{1+\infty} \\
& r=0 \text { ج }
\end{aligned}
$$

ستتعلّم في هذه الوحـلـة كيف:

Y-1 تفهم أن ميل المنحنى عند نقطة محددة هو ميل خط المهماس عند تلك النقطة، وتستخدم الرموز دُ (س)، د"(س)،
 وجهـع الدُوال وطرحها
 عدد نسبي ن) بالإضافة إلى مفاهيم الضضرب بائثابت، وجمـع الدندوال وطرحها .

وجهـع اليدوال وطرحها .
 تكون د (س) دالنة كثيرة الـحدود من الدنرجة الثانيـة (دالثة تربيعية) على الأكثر.

｜لمفرحات	هعرفة قبلية		
tangent	اختبر ههاراتك	تعلمت سـابقًا آن：	المصلـر
$\begin{array}{r} \text { الـتفاضل (الاشتقاق) } \\ \text { differentiation } \\ \text { اليجشاد المشتقتقة differentiate } \\ \text { derivative } \end{array}$		تستخدم قوانين القوى لتبسيط عبارات إلى الصيغة أ سن	الصض التاسع، الوحدة الثالثة
دالة الميل gradient function المشتقة الأولى first derivative	Y أوجد قيهـة هـا يلي： 1＋باس＋ 1 $\frac{1}{r}-=$	تجّد قيهـة عبارة جبرية．	الصض التاسع، الوحدة الثالثة
المشتقة الثانية second derivative دوال متزايـدة increasing functions	「 بالنقطة（r، 0 （ 0	تجد معادلة هستقيم باستخخدام الميل ونقطة على هذا المستقيم．	الصف التاسع،، الوحدة السـابعة، الصف العاشـر، الوحدة الأولىى
دوال متتاقصة decreasing functions	\＆）احسب ميل المهـاس الذي يمر بالنقطتين（٪، ع）،（7،0）	تجد ميل الهسستقيمه بمعرفة نقطتين عليه．	الصضف التاسع، الوحدة السـابعة، الصد العاشثر، الوحدة الأولى

لماذا ندرس التفاضل؟

علم التقاضل والتكامل Calculus هو دراسـة التغيير في سلوك الدووال، وينقسـم إلى قسـهين هها ：التفاضل والتكامل． ولعلم التفاضل والتكامل استخخدامـات واسعة في العلوم، والطبب، والهندسـة، والاقتصـاد ． على سبيل المثال، يستخخدم علم التفاضـل والتكامل في：

تصهيم أجنحة الطائرات
الاستشـارات الاقتصـادية اللشركات في موضوع استراتيجيات التسعير．
－دراسـة الاضهححلال الإشعاعاعي
－دراسة تغيير أعداد السـكان．
－التطبيقات الفيزيائية والهندسية ．
في هذه الوحدة ستدرس التفاضل، وهي الأداة الأولى من أداتَي علم التفاضـل والتكامل الأسـاسيتَين．ستتعلم قوانين التفاضل وكيفية تطبيقها لدحل الـهسائل التي تتضهن الهميل عند نقطة هـا على المنحنى، ومعادلات خطوط المهـاس، ودراسة فترات تزايد وتتاقص اللدوال، وإذا كان لدينا عبارة أو صيغة تمثل الهسـافة التي قطعها جسمر من نقطة البداية، يمكنتا استخدام التفاضل لحسـاب سـرعته وتسـارعه عند أية نقطة خـلال رحلته．

Y- ا المشتقة الأولى

tangent تعلّهت سـابقًا كيفية تقدير ميل منحنى عند نقطة هن خـلال رسم خط همـاس مناسـب، ومن ثـم حسـاب ميل هـا المهــاس.

 أنها عملية تستغرق وقتًا لأنه يجب رسـم منحنى دقيق أولاً . لهذا ستتعلم في هذه الوحدة طريقة لإيجاد الهيل الدقيق للهنحنى عند أي نقطة عليه، ويهكن القيام بذلك دون رسمى منحنى أو خط مهـاس، باستخدام طريقة تسهى التتفاضل (الالاشتقاق) (differentiation، وللقيام بذلك، علينا إيجاد الـمشتقة differentiate للدالة أو

لـعـادلة الهنحنى.

|ستكشُف

تمّ إعطاء ثلاثة طلبة أ ، ب ، ج ، مخططات للمنحني نفسهه.
طلب إليهم رسم خط مهاس عند نقطة على الهنحنى حيث س = 0، ومـن ثم حسـاب ميل الهمهاس عند تلك النقطة. للقيام بذلك، حدّد الطلبة إحداثيات نقطتَين على المهـاس الذـي رسـوهوه. تبيّن التمثيـلات الآتية محخطاتهم:

 أدناه، مقرّيًا إلى أقرب منزلتَين عشـريتَين: ج الطالبب ج الطالب ب

الطالب أ
 $(V, \cdot 0, \wedge, r) g$
 ب باقش وأكمل العبارة الآتية:

الهيل عند نقطة على الهنحنى هو ذاته ميل الهمهاس الهـرسوم بدقة عند تلك النقطة، وهـها : - موجبان عندما يهيل المهـاس إلى الأعلى من اليسـار إلى اليهين (يصنع المهــم زاس زاوية حادة هـع محور السينات الهوجب) . - صفر عندما يكون المهـاس أفقيًا (موازيًا لهـحور الـسينات). - سالبان عندما يهيل المهـاس إلى الأسفل من اليسـار إلى اليهين (يصنع الهمـاس زاوية منفرجة مـع محور السينات الموجب) . يبيّن الهـخطط الآتي أمثلةً على هذه الحالات الثڭلاث:

عند س = ب
عند س = أ

يعرض الـجدول الآتي الهميل (م) عند ست نقاط على منحنى هعادلته ص = س

「	Y	1	-	1-	Y-	الإحداثي السيني للنقطة
7	ε	r	.	Y-	$\varepsilon-$	مـيل المنـحنى

يبيّن الهخطط أدناه الميل (م) عند كل نقطة من هذه النقاط:

يـككتك أن تلاحظ العـلاقة بين الإحداثي السيني وقيهـة الميل في كل حالة، يسـاوي الميل الإحداثي السيني مضروبًا في بالـا

هذا يعني أن الميل عند أي نقطة على المنتحنى ص = د(س) = س توجد ثـلاث صيغ لكتابة الهيل:
(1) إذا كان ص = س

ةaclo
يرمز أحيانًا إتى مشتقة معاددلة الهنحنى بـصن

r
 كذلك تسهى د'(س) المشتقة الأولى بالنسـبة إلى س إذا كان ص = د (س) منحنى دالة، إذًا تعرف المشتقة الأولى first derivative على أنها دالة الميل gradient function للمنحني.

اشتقاق دوال القوة

لقد اكتشفت أن مشتقة د (س) = س

يـكتك؛ من خـلال رسمم مهـاسـات دقيقة على منحنى د (س) = سّ، أن تكتشف أن مشتقتها هي د'(س) = بّس
 د' (س) = هس؛ يمكتك مـلاحظة وجود علاقة جبرية بين دالة القوة د (س) ومشثتقتها د'(س) تقود هذه النتائج إلى قاعدة القوة (القاعدة العامة لاثتقاق دوال القوة).

$$
\begin{aligned}
& \text { © نتيجة } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { وهذا صتحيح لأي قوة حقيقية ن }
\end{aligned}
$$

من الأمثلة على ذلك:
-
 -

1 هثــال

أوجد مشتقة كل من الصيغ الآتية:

$$
\begin{aligned}
& \text { i } \\
& \frac{1}{r} ب \\
& \text { W = (س) } \\
& r=ص \\
& \text { هـ ص }
\end{aligned}
$$

الحــلّ:

$$
\begin{aligned}
& \text { إذا كانت د (س) = = أ، فإن د' دس) = = } \\
& \text { إذا كانت د (س) = س، فإن د'(س) = } 1
\end{aligned}
$$

قانون الضرب في ثابت

@

äḉno

قانون الجمع والطرح

¢ \bigcirc
إذا كانت د (س) = هـ (س) + ق (س) فإن د'س) = هـ' (س) + ق' (س) إذا كانت د (س) = هـ (س) - ق (س) فإن د' (س) = هـ' (س) - ق' (س)

r د د د

r	
أوجد الهشتقة بالنسبة إلى س:	
إ i	
$\frac{r}{{ }_{r}}$	
الحـلّ:	
$1-r$ r ${ }^{\text {r }} \times \varepsilon=$	
relr =	
r-w) $\frac{s}{w s} r=$	
$\frac{7}{\sim}-={ }^{r-}$ - $7-=$	

-هثـالـ
اكتب ع ع على الشـكل عس
$=$

$$
10-w t+{ }^{Y}=
$$

(10-

$$
r+u r=
$$

$$
\begin{align*}
& \text { فكّ الأقواس } \tag{i}\\
& (r-\omega)(0+m)=(س) د
\end{align*}
$$

$$
\begin{align*}
& \text { أوجد د'(س) لكل مهّا يأتي: }
\end{align*}
$$

$$
\begin{aligned}
& \frac{\varepsilon-\omega+{ }^{Y}{ }^{r} س}{\omega}=(\omega) \\
& ب
\end{aligned}
$$

$$
\begin{aligned}
& \text { إذا كان د (س) }= \\
& \text { الحــلّ: } \\
& 0+\frac{\varepsilon}{\omega V}=(\omega) د \\
& 0+\frac{1}{r}-\omega \varepsilon= \\
& \text { (0) } \frac{S}{m s}+\left(\frac{1}{r}-w\right) \frac{S}{v S} \varepsilon=(v)^{\prime} د \\
& \text { - }+{ }^{1-\frac{1}{r}-} \times\left(\frac{1}{r}-\right) \times \varepsilon= \\
& \frac{r}{r}-\operatorname{rr-}= \\
& \frac{r}{r w}-\frac{r}{\frac{r}{r} ש}-=
\end{aligned}
$$

$$
\begin{aligned}
& (v) \frac{s}{m s} \frac{1}{\varepsilon}+\frac{7}{r v}+{ }^{r} w 1 r=
\end{aligned}
$$

اشتسم كل حد في البسط على المقـام
() أوجـد الـهشتقة بالنسـبـة إلي س:

\wedge

$$
\begin{aligned}
& \Delta \\
& \nabla
\end{aligned}
$$

F أوجد د'(س) لـكل مهّا يـأتي :

$$
\begin{aligned}
& \frac{r^{0} / 1}{r m r} \\
& \text { rer rer rer }
\end{aligned}
$$

$$
\begin{align*}
& \text { i } س \frac{1}{r}=(س) د \text { ? } \\
& Y-=(\omega) د \tag{9}\\
& \text { • }
\end{align*}
$$

$$
\begin{aligned}
& 9 \\
& \text { ' } \\
& \frac{r}{\omega}=(\omega) \\
& \frac{\omega \varepsilon}{\omega l}=(س) د j \\
& \text { r }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\varepsilon-س Y+{ }^{r}{ }^{r}}{\omega}=(س) د \\
& \frac{\varepsilon}{\omega}-\frac{w Y}{\omega}+\frac{Y \sim}{w}=(w) د \\
& { }^{1-} \omega \varepsilon \text { - }+ \text { + }= \\
& (1-w-r+w) \frac{s}{w s}=(س)^{\prime} د \therefore \\
& { }^{r-}(1-) \times \varepsilon-\cdot+1= \\
& \frac{\varepsilon}{{ }_{j}}+1={ }^{r}-\omega \hat{\varepsilon}+1=
\end{aligned}
$$

Y-Y الميل عند نقطة

تعلهت كيفية إيجاد مشتقة الدالة، وتُعرف مشتقة الدالة أيضًا بدالة الهيل. يمكنك إيجاد الميل عند نقطة علي منتحنى من خـلال تعويض الإحداثي السيني للنقطة في دالة الميل.

- 0

لإيجاد الميل عند النقطة س = أ على منحنى ص = د(س) نوجد قيمة د' (أ)
أو وس صس عند س = أ

استكشفـ،
تبيّن كل من الجداول أدناه الميل عند خهس نقاط في أربعة تمثيـلات مختلفة . ادرس
الجداول ثم زاوج معادلة كل منحنى بوأحدة من دوال الميل الآتية:

$$
\begin{aligned}
& \text { r } ب \text { r } \\
& 0=\frac{v}{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4}-=\frac{\omega s}{\omega s}
\end{aligned}
$$

1) للهنحنى الذي معادلته ص = سr

(

ب) اللمنحنى الذي هعادلته ص = 0س

r	r	1	\cdot	$1-$	0
0	0	0	0	0	0

§ (للهنحنى الذي معادلته ص =

$$
\begin{aligned}
& \text { إذا كان د(س) = } 1 \text { + (اس - سّ } \\
& \text { (} 1
\end{aligned}
$$

(ب) ميل المنحنى ص = =

	$\begin{array}{r} \omega Y-11+\cdot= \\ \omega Y-11= \end{array}$
(1) با با	
	عند س = غ، الهيل يسـواوي
	IV عند

هثُــالـ

منحنى معادلته ص = د(س) = זrس + + Yاس - V

أوجد إحداثيـات النقطة (س ، ص) على المنتحنى حيث الميل يسـاوي الصفر.

در' (س) = • عند النقطة (س ، ص)

$$
\begin{gathered}
\cdot=(س)^{\prime} د \because \\
\cdot=\left(v-m+r+r(r) \frac{s}{w s}\right.
\end{gathered}
$$

$$
\cdot=-I r+w r \times r
$$

- =

القيمة س = - به هي الإحداثي السيني
س = -

للنقطة (س ، ص) حيث الميل يساوي
عوّض س = -Y في معادلة المنتحنى ص = د (س) لإيجاد الإحداثي الصادي للنقطة

$$
\begin{aligned}
V-\omega+r+r= & = \\
V-(r-) 1 r+r(r-) r & = \\
V-r \Sigma-1 r & = \\
19- & =
\end{aligned}
$$

$$
\begin{aligned}
& \text { الصفر }
\end{aligned}
$$

الحــلّ:
ميل الهنحنى يسـاوي الصفر عند (-Y، -9 19)

Y－Y تهارين

（）أوجد ميل الهنحنيات ص＝د（س）الآتية عند قيم س الهعطاة：

$$
\begin{aligned}
& \text { r = } \\
& \text { • = ج د د }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Y أوجد الإحداثيات السينية والصـادية للنقطة على منحنى: } \\
& \text { 「 - } \\
& \text { ب } 9 \\
& \text { Y • حيث الميل يسـاوي } V \text { V }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「 }
\end{aligned}
$$

©）ميل منحنى معادلته د（س）＝
بيّن أن الإحداثي السبيني لإحدى النقطتَين يسـاوي ع
ب أوجد الإحداثي السيني للنقطة الأخرى حيث الهيل يسـاوي

Y-Y

الهيل عند نقطة على المنحنى يسـاوي ميل المهماس عند تلك النقطة. إذ彡ا، إذا كتا نعرف ميل المهمـاس، فيمكنتا أن نجـد أيضًا معادلته في الصيغة الهـة ص = م س + جـ، حيث (م) الميل، جـ الهقطع الصـادي. وبذلك تكون صيغة معادلة المهـاس للمنحنى عند النقطة (س, ، ص,) هي ص = م س + جـ، م = د'(س,)، جـ = ص, - م س, حس، حيث (س,، ص, ص) تهثل إحداثيات نقطة التمـاس.
(

v

د(س) = ع́س
(س) i
ب ميل الهنحنى عند س =

أوجد المشتقة بالنسبة إلى س لإيجاد دالة الميل	
	r+ +
بالتعويض عن س = 1 في دالة الميل	$r-=r+1 \times 1 \wedge-r(1) \times 1 r=(1)^{\prime} د$ - عند س = (الالميل يسـاوي
بالتعويض عن س = ا في معادلة المنحنى لإيجاد الإحداثي الصادي للنقطة	$\begin{array}{r} r-=1 \times r+{ }_{r}^{r}(1) \times 9-{ }^{r}(1) \times \varepsilon=\rho \text { ? } \\ \rightarrow+{ }^{+}+=-\infty \end{array}$
ميل المهاس يساوي - با ويمر بالنقطة (1 (Y)	
	$1=$
معادلة المهـاس	ص = -rّس + إ أو = - -

9
دد(س)

r-r

() (رُسم مهـاس على منحنى معادلته ص = سץ عند النقطة (ץ، ع)، أوجد:
ج ا

> د'(س)

ميل الههـاس. ج معادلة هذا المـهـاس في الصيغة ص = م س + جـ

ץ) أوجد معادلة الهمـاس للهنحنيات الآتية عند النقاط الهعطاة:

$$
\text { د(س) = س } V \text { + عند النتطة على الهنحنى حيث س = } 1
$$

r = عند
ج د(س) = • • - Y بس - س

د (س) =

を) بيّن أن الهميل على الهنحنى ص = سَ + 9 يسـاوي الـهيل على الهنحنى ص = س

$$
\begin{aligned}
& \text { Y- بيّن أن ميل الهـهـاس يسـاوي (1) }
\end{aligned}
$$

ب أوجد إحداثيات النقطة التي يقطع هذا المهــاس عندها الهـحور السيني.

يبيّن الرسم الآتي أجزاء من الهنتحنى والمهــاسَين. أوجد معادلة كل من المهــاسَين.
(Y

axclumb
النسرعة هي ثياس التغغير وي الْهسـاضة (ص) نكا ولك وحاـة هن الْزهـن (س)، لنا فإن النـرعة تسـاوي هشتقة المهـاثة.

$$
\begin{equation*}
\text { كم يبعد الـجزيء عن نقطة البداية بعد • } 1 \text { ثوانٍ؟ } \tag{i}
\end{equation*}
$$

ب تعبّر دالة الميل (ك 5 ص) عن سـرعة الـجزيء عند أية نقطة خـلال رحلته، أوجد: (1) سرعة الجزيء. Y (Y ا سـرعة الجزيء بعد • Y ثانية.

Y-

عند إيجاد مشتقة ص بالنسبة إلى س، نحصل على و ك ص
 وإذا أوجدنا مشتقة s s صل بالنسبة إلى س، نحصل عادة على الشثكل s s' سَ ص وباستخخدام ترميز الدوال يكون رمز الهشتقة الأولمى هو د'(س) والمشتقة الثانية هو د"(س)

$$
\begin{aligned}
& \text { فصثاًّا ص = س } \\
& \text { - أو } \\
& \text { أو د"(س) = الس + }
\end{aligned}
$$

1. مثُـال

$$
\begin{aligned}
& \text { إذا كانت ص = د(س) = } 11 \text { - إس } \\
& \text { i أوجد د'(س) } \\
& \text { ب أوجد د"(س) } \\
& \text { جح عند = -1: }
\end{aligned}
$$

() أوجد قيهـة الهشتقة الأولى .
(Y
(11 - أوجد مشتقة ص بالنسبة إلى س

$$
\begin{aligned}
& \text { - }-V+m r \times \frac{1}{r}-r m \times r= \\
& V+\text { V } V \text { - } 1=
\end{aligned}
$$

إلى سجد مشتقة د'(س) بالنسبة

$$
\begin{aligned}
& (V+m-r w) \frac{s}{v s}= \\
& \text { - + } 1-\omega \times 7= \\
& 1 \text { - } 1 \text { = }
\end{aligned}
$$

$$
V+u-{ }^{Y} v=(u)^{\prime} \perp(1
$$

$$
V+(1-)-{ }^{Y}(1-) \times 7=(1-)^{\prime}
$$

$$
v+1+7=
$$

$$
12=
$$

عوّضن سى = -ا في المششيتمة

$$
1-v) r=(1-)^{\prime \prime} \perp(r
$$

$$
1-(1-) \times 1 r=
$$

$$
1 r-=
$$

11 م

أوجد قيمة س التي تجعل المشتقة الثانية للدالة د (س) = لاس + + بس
تسـاوي 11
الحـــل:
أوجد مشتقة دُ (س) لإيجاد المشتقة الثانية
د'(س) = آYس + ז זس - 0

$$
\text { د }+\omega \varepsilon \text {) }
$$

$$
11=\varepsilon+m \varepsilon r
$$

$$
\frac{\varepsilon-11}{\varepsilon r}=m
$$

$$
\frac{1}{7}=
$$

$$
\begin{aligned}
& \text { عوّضن س = -1 في المششتمة } \\
& \text { الاّولى }
\end{aligned}
$$

|) أوجد المشتقة الثانية لكل مهّا يأتي:

$$
\begin{align*}
& 10-{ }^{r} \frac{0}{r}+{ }^{r}{ }^{r} \frac{r}{r}=0 \quad \text { e } \tag{i}\\
& r-س V+{ }^{r}-س r=ص \\
& { }^{\circ}{ }^{2}+{ }^{\varepsilon} \frac{\mu}{\Lambda}-1=(س) د \tag{9}
\end{align*}
$$

τ

$$
\begin{aligned}
& \text { ج } \\
& \text { داس } \\
& \frac{1}{v}=(\omega)
\end{aligned}
$$

(Y) د
$(Y)^{\prime}$ ب
$(r){ }^{\prime \prime}$
「

د(س) = 7 س

أوجد قيـة الثابت أ

س = أ، أوجد :

قيهـة الثابت أ

äدćluٌ

٪) يهكن حسـاب الهسـافة التي قطعها جزيء انطلاقًا من نقطة البداية ص متر، من خلال الصيغة ص = r
كم يبعد الجـزيء عن نقطة البداية بعد r ثوانٍ؟

خـلال رحلته، أوجد :
ا) تسـارع الـجزيء.
r (

ץ-0 الدوال المتزايدة والمتناقصة

استكاشف

1) يبيّن التهثيل الآتي منحنى ص = د(س)

أكهل العبارات الآتية عن ص = د (س) في الهـجالل الهبيّن في الهـخطط. كلمـا تزايدت قيهة س، قيمه ص ص إشارة الميل عند أي نقطة هي دائمًا هل الدالة متزايدة أم متتاقصة؟ ٪) يبيّن التهثيل الآتي منحنى ص = فـ(س)

أكهل العبارات الآتية عن ص = ض(س) في الهـجال المبيّن في الهـخطط. كلما تزايدت قيهة س، قيهة ص صـ
إشارة الهيل عند أي نقطة هي دائهًا هل هذا النوع من الدوال هو دوالل متزايدة أم متتاقصة؟

أكمل العبارات الآتية:
د (س) = سّ مت متزايدة في الفترة
د د (س) = س
هـ (س) = - س سّ متزايدة في الفترة
هـ (س) = - س س ل متتاقصـة في الفترة

مـن خـلال استكتثف r ، تكون الدالة د (س) متزايدة إذا تزايدت قيم د (س) كلمـا تزايدت

بطريقة مماثلة، تكون الدالة د دس) متتاقصـة إذا تتاقصت قيم د (س) كلها تزايدت
 كها يـكنتا دراسة تزايد دالة عند نقطة، ونعني بذلك أن قيم الدالة متزايدة حول هذه النقطة.

إذا كان ميل الدالة موجبًا عنـد نقطة مـا تكون الدالة متزايدة عنـد تلكك النقطة. بالطريقة نفسـها تكون دالة متتاقصة عند نقطة مـا، إذا كان ميل الدالة سـالبًا عنـد تلك النقطة.

انظر الآن إلى الدالة ص = د (س) الهبيّنة في التتثيل البياني.

يهكنتا تقسيم التمثيل البيـياني إلى قسـمَين مختلفَين:

- تتزايد د (س) عندهـ س > أ، أي أن د'(س) > •
- تتتاقص د (س) عندمـ س > أ، أي أن د'(س) >

أي أن:
تتزايد د (س) عند س = ل إذا كان د'(ل) •

أمـا النقطة التي يلتقي عندها القسـهان (س = أ) فيكون ميل الهنحنى عندهـا صفرًا، أي - =

تكون الدالة ص = د (س) في الفترة المعطاة لـ س: - متزايدة إذا كان د'س) $=$ - متاقصـة إذا كان د'(س) =
ir

$$
\begin{align*}
& \text { بيّن أن د (س) = س † - } 1 \text { س + } 11 \text { : } 11 \\
& \text { متتاقصة عند س = } 1 \tag{i}\\
& \text { ب متزايدة في الفترة ع }
\end{align*}
$$

$$
\begin{aligned}
& \text { أوجد المشتقة } \\
& 11+m
\end{aligned}
$$

$$
\begin{aligned}
& \text { عوّض س = ا في المشتقة } \\
& 1-2 \\
& \varepsilon-=Y-1 \times r=(1)^{\prime} د \\
& \text { - > (1) })^{\prime} \because
\end{aligned}
$$

$$
\begin{aligned}
& 7-\omega Y=(\omega)^{\prime} د \\
& r=Y-\varepsilon \times r=(\varepsilon)^{\prime} د \\
& 1 \varepsilon=7-1 \cdot x Y=(1 \cdot)^{\prime} \text { د } \\
& \left.\left.\cdot<(1 \cdot)^{\prime}\right\lrcorner \text {, }<(\varepsilon)^{\prime}\right\lrcorner \therefore
\end{aligned}
$$

مثــالـ

متتاقصة.
ب متزايدة.
الحــلـ:
أوجد الهـشـقـة
Y
د'س) = \& - ז'س

- >

$$
\begin{aligned}
& \varepsilon->v- \\
& r<v
\end{aligned}
$$

$$
\cdot<v r-\varepsilon
$$

$$
\begin{gathered}
\varepsilon-<w- \\
r>w
\end{gathered}
$$

تهاريـن Y-0

() حدد مـا إذا كانت كل من الدوال الآتية هتزايدة أو متتاقصة عند النقطة أو الفترة الهعطاة:

$$
\begin{align*}
& \text { ص = سَ - } 7 \text { س عند س = } \tag{1}\\
& \text { ب ص = س } \\
& \text { ص } 1 \text { = } 1 \text { = } 1 \text { - س - س } \tag{ج}
\end{align*}
$$

$$
\begin{align*}
& \frac{0}{r}-=\text { = عند } \tag{9}\\
& q \geq \text { د } 9 \text { د (س) = } \tag{j}\\
& \text { د } \\
& \text { أوجد مجموعة قيمس س التي تجعل الدالة: }
\end{align*}
$$

$$
\begin{aligned}
& \text { ب د (س) = 0 م } \\
& \text { ج } \\
& \text { د د (س) = } \\
& \text { د (س) = = ا } \\
& \text { د (س) = (}
\end{aligned}
$$

$\boldsymbol{\mu}$ (تتتج شركة تصنيع س سلعة في اليوم. يمكن كتابة دالة الربح ل(س) من خلال الصيغة

§) بيّن أن الدالة د(س) = س -

قأمة التحقّق من التّلّم وlالفهم

$$
\begin{aligned}
& \text { ميل المنـحنى } \\
& \text { • تهثل ك س ص ميل الهنحنى ص = د (س) } \\
& \text { قوانين الاشتقاق } \\
& \text { • قانون القوة: ك ك } \\
& \text { • قانون الضرب في ثابت: ك s s ك } \\
& \text { ق قانون الجهع: } \\
& \text { • قانون الطرح: } \\
& \text { لإيجاد الميل عند النقطة س = أ على هنحنى ص = د (س) نوجد قيهة د' (أ) } \\
& \text { أو كس ص عند س = ألا } \\
& \text { الممماس على منـحنى }
\end{aligned}
$$

 عند تلك النقطة تعطى من خالال الصيغة:

$$
\begin{aligned}
& \text { • ص = م س + جـ، حيث م = د'(س,)، جـ = صس, - م مس, } \\
& \text { • ص - ص, = }
\end{aligned}
$$

المشتقة الثانية
نرمز إلى المشتقة الثانية للدالة ص = د(س) بالآتي:

الدووال المتتزايـدة والمتتناقصة
تكون الدالة ص = د(س) في فترة معطاة لـ س: - متزايدة إذا كان د'(س) = ك - متتاقصة إذا كان د'(س) = ك صس
(

المتغيراتالعشوائيةالمتقطعة(المنفصلة) Discrete random variables
التوقع = ت (س) = Z س لس)
التباين =
r-ع تستخدم وتفسر جداول التوزيع الاحتمائي المتعلقة بـحالة معطاة تـتضمن متغيرًا عشوائيًا متقطعًا (س)، وذلك في أمثلة من الحياة الئواقية.

لماذا ندرس التوزيعات الاحتمالية؟

تطلق بعض الشركات حهلة إعلانات ترويجية إذا كان الناتج الأكثر ترجيحًا مـن هذه الاتحملة هـو أن الهبيعات ستتزايد ـ وإذا كانت الثـركة على علم بناتجَي 'في أسوأ الأحوالّ' و 'في أحسن الأحوالّ، فستكون قادرة على أخذ القرارات بناء على تقديرات لاحتمالات هذَّين الناتجَين. تبنى احتهـالات هذَين الناتجَين على تحليل للتوزيع الاحتهالي للـهبيعات. يهـكن أن يسـاعد التوزيع الاحتهالي على توقع المبيعات المستقبلية وأن يقدم تقييهًا لهـخاطر الأعهـال الهتضهنة.

لنفرض أن شـركة تفكر في الدخول في خط أعمـال جديد، ولكنها تحتاج إلى تحصيل دخل سنوي . . 0 ريال عُهـني على الأقل قبل أن تبدأ بتحقيق الأرباح. إذا اقترح التوزيـع
 الشركة عندئذ تقريبًا مستوى الهـخاطر التي ستواجهها شرط دخولها الخط الجديد من

ץ- ا المتغيرات العشوائية المتقطعة (المنفصلة)

يكون هتغير مـا عشوائيًا متقطعًا إذا أمكن أن يأخذ مجهوعة قيم قابلة للعد ضــن هـجال معيّن، وتحدث هـنه القيم بشكـل عشوائي. مثًاً، عدد الإجابات الصحيحة المهكنة في اختبار قصير مكوّن من ستة أسئلة هو متغيّر عشوائي متقطع يهكن أن يتخذ أيًا من القيم • أو ا أو ץ أو نالاحظ أنه يهكنتا عد القيم (وهي سبع)، ويهكن أن نرمز إليها باستخدام الرمز (س)، حيث

يحدث المتتفير العشوائي المتقتطع المنفصصل Discrete random variable في الكثير من الححالات التي نقوم فيها باختيارات مستقلة (حيث نختار العناصر هـع إرجاع) وكذلك حالات نقوم فيها باختيارات غير هستقلة (حيث نختار العناصر دون إرجاع).

مثــال

اكتب القيم المهـكتة اللهتغيّر (و) .
ب استخخدم مخطط احتهـال ثم:
Y ا أوجد قيهـة (ت) الأكثر احتهـالًا .
يهثل الهتغيّر العشوائي الهتقطع (و) عدد مرات ظهور الـرقمّم يهثل الهتغيّر العشثوائي الهتقطع (ت) مجهوع العددَين النـاتجَين.

1) اكتب القيم الهمهكتة للهتغيّر (ت).

الحــلّ:
ربها لا نحصل على الـرقم 0 أو نحصل عليـه مرة أو مرتين
$\left\{\begin{array}{r}1 \\ \text {, }\end{array}\right\} \ni$ g

\| المنرد الأول							
7	-	!	r	r	1	+	
v	7	0	ε	r	r	1	
\wedge	v	7	-	ε	r	r	
9	\wedge	v	7	0	ε	r	
1.	9	\wedge	V	7	0	を	
11	1.	9	\wedge	V	7	-	
IT	11	1.	9	\wedge	v	7	

يبيّن مخطط الاحتهـال أنه يوجد 7 بن ناتُجًا .
الناتج الأكثر احتمالُا هـو الناتّج الذني يظهر أكبر عدد من
المـرات مقارنة مع النواتج الأخرى، وهو الات
Y) ثيهة (ت) الأكثر احتهالًا لمهجموع العددين

الناتجين هي

Y

تم ستب بطاقتَين من الكيس دون إرجاع ع

> يهثل المتغيّر العشوائي المتقطع (ت) مجهوع الأرقام على البطاقتَين المختتارتَين.

ب يشكّل الهتغيّر العشوائي الهتقطع (د) الفرق (غير السـالب) بين الأرقام على البطاقتَين الهختارتَين.
أوجد :
(1) القيم الـهمكتة للهتغيّر (د)
(Y) القيمهة الأكثر احتهالًا للهتغير (د)، والقيهـة الأقل احتهـالًا للهتغير (د).

يتم اختيار أول بطاقة من أصل 0 بطاقات. يتم اختيار ثاني بطاقة من ع بطاقات متبقية. تشير علاممات × على المخطط إلى استحالـة أن يتم اختيار البطاقة نفسها مرتَين.

$$
\{\varepsilon ، r, r, 1 ، \cdot\} \ni د
$$

 والقيهتان الأقل احتهـالًا للهتغير (د) ههـا •، ع ع

تٌ

ثـم جُهـع الرقمـان الناتجان ليكون الهـجهوع الهتغير (س) . أنشئ مخطط احتمـال واستخخدمه لإيجاد :
(1) أكبر قيمة مهكنة للهتغيّر (س) (س)

ب اكتب كل القيم المهكتة للهتغيّر (س).
ج اكتب القيهـة الأكثر احتهـالًا للمتغيّر (س) .
ץ) شـارك ثالاثة أولاد من الصف العاشـر وولدَين من الصف التاسـع في سباق طوله بَ كم. تجد أدناه ثلاثثة متغيرات عشوائية متقطعة: - (ب) هو عدد الأولاد من الصف التاسع اللذين يكهلون السباق في أهل من •ب دوثيقة.

ب أوجد عدد القيم المهـكتة للهتغيّر العشوائي المتقطع:
(b) (1
(ب) $(Y$
「 تستحب فتاة بشكل عشوائي ع حبات تفاح من الكيس.
äać

أوجد القيم الهمهكنة للهتغيّر (خ) عدد حبات التفاح الخضـراء الهـختارة. ب أوجد القيم الهمكنة للمتغيّر (خ') عدد حبات التفاح الهختارة التي ليست خضراء.

غ) لدى مزارع \& عنزات و ه بقرات. سيتم اختيار (ن) من هذه الـحيوانات بـنـات ونكل عشوائي ليتم فـحصها .

أوجد قيــة (ن)

ه) تمّ رمي r أسهم بشكل عشوائي باتجاه لوح دائري بحيث يعلق النسهم في مقطع مرقم كهـا هو مبيّن أدناه. يُعتبر رقم الهقطع حيث يعلق السهم نتيجة ذلك السهمم.

يمثل الهتغيّر العشوائي الهتقطع (س) هـجموع نواتج الأسهم الثـلاثة. يمثل الهتغيّر العشثوائي الهتقطع (ص) حاصل ضرب نوات الهـي

إذا كانت نواتج الأس

$$
\begin{aligned}
& \text { (1) } \\
& \text { (} \Gamma \\
& \text { ص }
\end{aligned}
$$

ب أوجد الفرق بين:
() أكبر ثيهـة مهكنة للمتغيّر (ص) وأصغر قيهـة مهكتـة للهتغيّر (س) .

٪) بقي في حافلة مقاعد خالية لـ ع ركاب إضافيّين فقط.
 يقرر سائق الحافلة اختيار ع من هؤلاء الأشخخاص عشوائيًا لصعود الحافلة . تجد أدناه ثـلاثية متغيّرات عشوائية متقطعة:

- (و) هو عدد النسـاء الللواتي تمّ اختيارهن عشوائيًا لصعود الـحافلة.
 - (ج) هو عدد الأولاد الذين تمّ الختيارهم عشوائيًا لصعود الـيا الحمافلة.

اكتب القيم الهمكنة للهتغيّر (و) .
ب برى السـائق أن امرأة مسِنة وابنتها من ضمن الذين ينتظرون لصعود الـحافلة، فيسـهـح لهـهـا
 اشـرح أثر قرارات السـائق على القيم الهمكنـة للهتغيّر:
($)\left({ }^{r}\right.$
(م) (1
(Y أعط سببًا موجزًا لعدم كون كل من الآتي متغيّرًا عشوائيًا متقطعًا : أطوال الأثـجار في الـحديقة.
عدد الأثخخاص الذين زاروا الـحديقة يوم السبتـ.

Y Y Y التوزيع الاحتمالي للمتغيّر العشوائي المتقطع

التتونيـع الاحتـمالدي probability distribution لهتغيّر عشوائي متقطع هو عرض لكل ڤيهـة
من قيم الهتغير واحتهـال حدوثها .
الطريقة الهعتادة للعرض هي من خلال وضـ القيم واحتهالاتها في جدول يسهى جدول التوزيـ الاحتهـالي
 فإن عدد الصور الناتجهة في كل محاولة يرمز إليهه بـ (س) وهو متغيّر عشوائي متقطع حيث

لككل رمية ل (صورة) = ل (كتابة) = 0 ل يبيّن مخطط الشنجرة الآتي النواتج الـهمكتة: الرمية الأولى الرمية الثنانية

عندها ترهمي قطعة نقدية منتظهة مرتين، فهن الهتوقع أن لا تظهر صورة في Y0٪ من الهـحاولات، و • \% تظهر فيها صورة واحدة، وتظهر صورتان في Y \% مـن الهـحاولات. يبيّن جدول التوزيع الاحتهـالي الآتي كل القيم المهـكنة للهتغيّر (س) مـع احتهـالات حدوثها .

y	1	.	ω
.,$r o$	$\cdot, 0$	\cdot, ro	(س)J

äćlıй
لاّي قيهة من قيمب سن يكون ل (س) = النتكرار النسبي

كتـك القيهـة
مجهوع الاحتمهالات
في جادول التوزيع
الاحتهـالي يساوي الواحــ

المؤكا وقوع إحا
الهتفير العشوائي عنــ
إجراء التجرية.

احتهـالات القيم المـمكنة اللمتغيّر (س) مسـاوية للتكرارات النسبية لـ قيم (س).

r

يبيّن الجدول الآتي التوزيع الاحتهالي لهتغيّر عشوائي متقطع (ر) .						
	V	7	0	ε	「	,
	$\cdot, r 1$	$\cdot, 10$	$\cdot, 1-i$	i	\cdot, ε	(J) J
مـجموع الاحتمالات في جدول التوزيع الاحتمائي يساوي 1، أيج ل(ر) =	$\begin{aligned} & 1=\cdot, r 1+\cdot, 10+\cdot, 1-i+i+\cdot, \varepsilon i \\ & 1=\cdot, 77+i r \end{aligned}$					
توجد قيمتان للمتغير (0 ه هـ		$\begin{gathered} (0) \mathrm{U} \\ \cdot, 1 \\ \cdot \\ 1-\cdot \end{gathered}$	($\varepsilon) ~ J=$ $-i+i=$ $-i r=$ $V \times Y=$ $\cdot, Y \varepsilon=$	$4>$	$\geq \varepsilon)$	

- مثــال

 يختار الولد عشوائيًا قطعتَي حلوى من الكيس من دون إرجا إِياع.
يهثل الهتغير العشوائي الهتقطع (خ) عدد فطع الحكوى الخضراء التي يختارها .

ب استخخدم جدول التوزيع الاحتمالي الآتي للهتغيّر (خ) لإيـجاد احتهال أن يختار قطعة حلوى خضراء واحدة على الأقل.

r	1	\cdot	τ
$\frac{1}{10}$	$\frac{1}{10}$	$\frac{7}{10}$	$(\tau) \mathrm{J}$

الحــلّ:

 الدخصر|
ب ل ل(على الأقل واحدة خضراء) = ل (() () ل

$$
\begin{aligned}
\frac{1}{10}+\frac{1}{10} & = \\
\frac{9}{10} & = \\
\frac{4}{0} & =
\end{aligned}
$$

Y-Y تِّارِّ

$$
\begin{align*}
& \text { () يبيّن الجدول التوزيع الاحتهـالي للهتغيّر العشوائي الهتقطع (س). } \\
& (r \neq m) ل \tag{ج}\\
& (r \leqslant m) ل \tag{1}\\
& \left({ }^{r}>\mathrm{m}\right) ل \\
& (\varepsilon<m) ل \quad(\varepsilon>m \geqslant 1) \text { ل } \tag{د}\\
& \text { (Y) يبيّن الجدول التوزيع الاحتهـالي للهتغيّر العشوائي الهتقطع (ع). } \\
& \text { (أوجد قيمـة الثابت ج } \\
& \text { ب أوجد قيمـة: } \\
& (1 \geqslant \varepsilon) J(1 \\
& (r \geqslant \varepsilon>1) J(r \\
& \text { ج أوجد احتهـال أن يكون (ع) عددًا فرديًا . } \\
& \text { r (يبيّن الجـدول التوزيع الاحتمالي للهتغيّر العشوائي الهتقطع (ص). } \\
& \frac{11}{Y!}=1 \tag{1}\\
& \text { ب أوجد احتهـال أن يكون (ص) عددًا أوليًا }
\end{align*}
$$

§) تهلك شـركة 10 آلية، وهي 7 شـاحنات، 0 حافلات، تمّ اختيار آليتَين منها عشوائيًا .
| أكمل جدول التوزيع الاحتمالي الهعطى أدناه لعدد الحافلات المـختارة (و).

r	1	\cdot	g
$\cdots \cdots$	$\frac{1}{r 1}$	$\frac{r}{V}$	$(g) J$

ب أوجد احتهـل أن يتم اختيار حافلة واحدة على الأكثر.

ץ-

 قيم الهتغير العشوائي الهتقطع التي لها احتهـالات أعلى يتوقع حدوثها أكثر من تلك التي ڤيم احتهـالاتها أقلـ.
القيمة المتوقعة

نسـهي الوسط الحسـابي لهتغيّر عشوائي متقطع (س) الـقيمـة المـتوقوتة الهتغيّر ونرمز إليها بـ ت (س) •
لنفرض أنتا نقوم بإجراء تجارب تتضهـن رمي قطعة نقدية غير منتظهـة ب مرات، وليكن الهتغيّر العشوائي المتقطع (س) عدد مرات ظهور ’صورة‘، يبيّن الجدول الآتي التوزيع الاحتهـالي للهتنغير (س) .

r	r	,	\cdot	ω
$\cdot, \cdot 7 \Sigma$	$\cdot, Y \Lambda \Lambda$	$\cdot, \Sigma T Y$	$\cdot, Y 17$	$(\omega) J$

مههـا أكثرنا من عدد التجارب، نتوقع أن يظهر:

\%aço
لتحويل الاحتهالات إلى
نسب مئوية، نضريها في
\%..
$\%$ \% $M, T=\% \cdots \times \cdot, Y T T$

ويكون هذا لأن الاحتهالات في الـجدول هي التكرارات النسبية لقيم (س).

إذا قهنا بـ . • ا تجرية، فسيكون التوزيع التكراري الهتوقع لعدد مرات ظهور ’صورة‘ كالآتي:

r	Y	1	-	(عدد مرات ظهور 'صورة')
$7 \varepsilon=1 \cdots \times \cdot \cdot 7 \varepsilon$	$Y M A=1 \cdots \times \cdot, Y M A$	ErY $=1 \cdots \times \cdot$, 2 Hr	YIT $=1 \cdots \times$, Y17	التكرارات المتوقعة (ك)

يهكنتا حسـاب عدد مرات ظهور ’صورة‘ (الهتوقِ) في . . . ت تجربة من جدول التكرار هذا:

$$
1, r=
$$

$$
\begin{aligned}
& \frac{1 r \cdot}{1 \cdots}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { صورة واحدة في Y, ب ب ٪ من التجارب. } \\
& \text { صورتان ضي ^, , ص^٪ من التجارب. } \\
& \text { ثالاث صور في ₹ \& ٪ من التجارب. }
\end{aligned}
$$

إذا قمنا الآن باستبدال التككرارات بالتكرارات النسبية (الاحتهـالات) في الحسـابات أعالاه،
asćló
يهكتا أن تفكر في
ت (س) على أنها المهــلـلـ على المدى الطويل لقيمر (س) بعـــــــــد كـد كبير من التجارب.

نحصل على القيمـة نفسهـا لـ تـ تـ (س):
=
$(\cdot, \cdot \operatorname{IE} \times$ Y $)+(\cdot, Y$ MA \times Y $)+(\cdot, \Sigma Y Y \times 1)+(\cdot, Y 17 \times \cdot)=$

$$
1, r=
$$

القيمة المتوقعة لمتفيّر عشوائي متقطع (س) هي ت (س) = З س لم (س)

يعطي التباين variance أو الانحراف المعياري لمتغيّر عشوائي متقطع قياسًا لانتشـار القيم حول الوسط (التوقع ت(س)) .
يرمز إلى التباين بـ ع'(س) ويرمز إلى الانحراف الهعياري بـ ع(س).

سَ بـ ل (س)، ت (س) على الترتيب للحصول على صيغة لتباين متغيّر عشوائي متقطع (س).
©
 الانححراف المعياري لمتغير عشوائي متتطع (س) هو ع(س) =

$$
\begin{aligned}
& \text { التباين = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「 }
\end{aligned}
$$

يبيّن الجدول الآتي التوزيع الاحتهـالي لهتغيّر عشوائي متقطع (ص).

Ir	i	ε	1	v
$\cdot, 1$	\cdot, r	\cdot, ε	\ddots, r	$(\nu) \jmath$

لـدينا ت (ص) = 1, 0، أوجد:
قيهة الثابت أ
. \cdot (ص) ${ }^{\top}$ ب

$$
\begin{aligned}
& \text { بتعويض القيم من الجددول في } \\
& \text { صيغة ت (ص) حيث ت ت اصن اصن } \\
& \text { تساوي } 0,1 \\
& \cdot, \mid \times 1 r+\cdot, r \times i+\cdot, \varepsilon \times \varepsilon+\cdot, r \times 1=(\nu)=1 \\
& i(\cdot, r)+r, i= \\
& 0,1=i(\cdot, r)+r, 1 \\
& \frac{r, 1-0.1}{\cdot, r}=i \\
& \text { 1•= }
\end{aligned}
$$

$$
\begin{array}{r}
47, \cdot 1-21,1= \\
10, \cdot 9=
\end{array}
$$

r-r تمارين

() يبيّن الجددول التوزيع الاحتهـالي للمتغيّر العشوائي الهتقطع (س).

$$
\begin{aligned}
& \text { 1 أوجد ت (س) } \\
& \text { ب أوجد ع }
\end{aligned}
$$

(Y) يبيّن الجددول الآتي التوزيـع الاحتمـالي لهتغيّر عشوائي متقطع (ص).

ε	r	r	1	.	ν
., 0	J	\cdot, r	$J r$	$\cdot r r$	$(ص) J$

أوجد قيهـة الثابت لـ ل
أوجد قيمة ت (ص) .
أوجد قيمة ع
اكتب قيهةه ع(ص) مقرّبة إلى أقرب ${ }^{\text {أقنازل عشرية. }}$
个) لدينا الهتغيّر العشوائي الهتقطع (ز) بحيث ز إذا كان لقيم (ز) الأربع المهكتة الحتمالات متسـاوية، فنأوجد:
(j)
(j) ${ }^{\top} \varepsilon$ ب

乏) يبيّن الجدول الآتي التوزيع الاحتهـالي لهتغيّر عشوائي هتقطع (و).

p	9	r	1	9
$\cdot, \ \Lambda$	$\cdot, 1 \Sigma$	$\cdot, r \Lambda$	\cdot, Σ	(g) J

إذا كان لدينا ت (و) = ب, 0 ، ، فأوجد :
قيـة م
ب
(0) يبيّن الجدول الآتي التوزيع الاحتهـالي لهتغيّر عشوائي هتقطع (غ) .

$r \varepsilon$	$ب$	v	r	$\dot{\varepsilon}$
\cdot, r	$\cdot, 1$	\cdot, r	\cdot, r	$(\dot{\varepsilon}) J$

لدينا ت (غ) = ب
أوجد قيـة ب

أوجد قيهـة ع

$$
\frac{J}{Y \ldots}=
$$

$$
\begin{aligned}
& \text { VV = بيّن أن ت (ر) } \\
& \text { ب أوجد ع (J) }
\end{aligned}
$$

. يبيّن الجدول الآتي الأرباح الهحتهلة لهشروع تجاري مـع احتهالاتها (Y

r....	r....	\ldots	.	1...]-	الربحِ (ريال عُماني)
$\cdot, \cdot \varepsilon$	$\cdot, 11$	\cdot, Y^	$\cdot, ~ H ~ H$	$\cdot, Y \Sigma$	الاحتمال

أوجد القيمة المتوقعة للأرباح من هذا الهشروع التجاري.
ب أوجد التباين للأرباح.

^) توّت إدارة مريع دوّار منتظم مححدد بالأرقام Y، ب، وتمّ جهـع الناتجَين معًا ليعطيا الهـجهوع الكلي (ت).

أكمل مخطط الاحتمال الآتي مبيّنًا النواتج الـ 17 المهكنتة ذات
الاحتهـالات المتسـاوية.

ب استخخدم هخطط الاحتهال المستخخدم في الجـزئية أ لتكهـل جدول التوزيع الاحتهالي الآتي للهتغيّر (ت)، علمًا أن الاحتهـالَين الناقصَين متسـاويان.

$1 r$	11	1.	9	\wedge	\vee	7	0	ε	$ت$
$\frac{1}{17}$	$\frac{r}{17}$	$\frac{1}{17}$	\cdots	$\frac{\varepsilon}{17}$	\cdots	$\frac{1}{17}$	$\frac{r}{17}$	$\frac{1}{17}$	(ت) 〕

تتوقع أن يكون الهـجهوع:
S^) (1
(Y) أكبر مـن -

قأُمة التحقّق من التّلّم ولمهم

- يأخذ الهتغير العشوائي الهتقطع ڤيمًا محددة وقابلة للعد .
- التوزيع الاحتهـالي للهتغيّر العشثوائي المتقطع هو عرض لكـلـي قيمهة من قيم الهتغير واحتمـالها . - بالنسبة إلى الهتغيّر العشوائي الهتقطع (س):

$$
1 \geqslant(س) J \geqslant
$$

$$
\text { I = } 1 \text { (س) }
$$

ت(س) = گ س ل (س)
Y (س)

$$
\overline{(\omega)^{r} \varepsilon}=(\omega) \varepsilon
$$

تمارين مراجعةنهاية الوحدة الثالثة

() يبيّن الجدول الآتي التوزيع الاحتهالي لهتغيّر عشوائي هتقطع (س).

ε	r	Y	1	س
\&-7	S	ST-Y	$5-1$	(س)

أوجد قيهـة كـ
ب أوجد القيهـة الدقيقة لـ ت (س) .

ستخضـع سـميرة لاختبارات في أريع مواد هذه السنـة.
يبيّن الجدول الآتي توقعات معلمـاتها عن عدد الدرجات العليا (أ) التي ستحصل عليها .

ε	r	r	1	-	i
\cdot, M	$\cdot, r 7$	\cdot, ε	$\cdot, \cdot \wedge$	\cdot, ε	الاحتمال

أوجد القيهة المتوقعة لعدد الدرجات العليا (أ) التي ستحصل عليها سميرة.

- با أوجد ثيهـة
 على امتداد فترة ٪ سنوات.

$0 \cdot$	$\varepsilon 0$	$\varepsilon \cdot$	$r \cdot$	$r \cdot$	10	$1 \cdot$	0	1	$\%$ (i) الربح
$\cdot, \cdot 1$	$\cdot, \cdot r$	$\cdot, \cdot r$	$\cdot, \cdot \varepsilon$	$\cdot, \cdot 0$	\cdot, r	$\cdot, 0$	$\cdot, 1 \cdot$	$\cdot, 0$	(i) J

أوجد القيهة الهتوقعة للأرباح على استتهـار . . O ريال عُهـاني.

$$
\text { أطراف محددة بالأرقام -1، •، } 1
$$

تّهّت إدارة الاثنَين مرة واحدة وتمّ تسـجيل النتيجة (س)، وهي مـجهوع تربيع الرقمَين الناتجَين.

أوجد قيمة الثابت أ المستخخدمة في جدول التوزيع الاحتمـالي الآتي لقيم المتغير (س).

0	ε	r	1	\cdot	$س$
$\frac{i}{9}$	$\frac{1}{9}$	$\frac{i}{9}$	$\frac{r}{9}$	$\frac{1}{9}$	$(\omega) J$

ب
©) تحوي حزمـة من خهسـة أقراص فيديو ${ }^{\text {أفـلام ووثائقيَين. }}$

يبيّن الجدول الآتي، التوزيع الاحتمـالي للمتغيّر (م) عدد الأفلام المـختارة.

r	r	1	r
$\cdot, 1$	$\cdot, 7$	\cdot, r	$(\stackrel{r}{2}) \mathrm{J}$

يبيّن الجدولٍ الآتي، التوزيع الاحتهـالي للهتغيّر (د) عدد الوثائقيات الهـختارة.

r	1	\cdot	$د$
\cdot, r	$\cdot, 7$	$\cdot, 1$	$(د) J$

أعطِ سببًا لوجوب أن يكون مـجهوع ت (م)، ت (د) مسـاويًا لـ ب
|حسب: ب
$(\mathrm{r})^{\top} \varepsilon(1$
$(د)^{r} \varepsilon(r$
ج اكتب ما تلاحظه عن تباين هذَين الهتغيّرِين.

مصطلحات علمية

exponential form of الصيـخة ألأسّيـة لألأسـاس هـ :العدد هـ مـرفوعًا لقوّة هعيّنـة، وتكتـب هـن (19 ص)

الصيـغة الذخطيّة Linear form: هي علاقة بين متغيّرَين، سى، ص، يـكـن كتابتها في الصيغة صى = مس + جـ . يــكن تمثيل عالاقة خطية هن خـلال
التتـثيل البيـاني لهسـتقيم• (ص • ع)

الالصيغخة الثلوغاريتتميـة ثلأسـاس هـ logarithmic form of : استتخـدام العدد هـ أسـاسًا للوغاريتم، وتكتـب (

اللقيـمـة الالمتوقعهة expectation: قيـهة الوسط الدسـابي للمتغيّر العشتوائي المتقطّع، ويُرهـز إليهـا بـ ت (س) . (Ar ص)

الالوغاريتتم الططبيعي Natural logarithm: اللوغاريتم ذو الأسـاس هـ (عدد أويلر أو العدد النيبيري)• (ص YY)
i
discrete الـمتتغيّر الْعشوائي الـمتقطّع (المـنفصل)
random variable قيمر تابلة اللعل ضــن فترة معيّنـة (متجال)، وتحـدث هـه القيم بشكل عشوائي. (ص V (V)
الاممشتقة derivative: دالة الميل عند أية نقطة على منحني، ونرمز إليها بـ ك صـ (ص الأمشتقة الأولى first derivative: يُرْز إليها بـ د'(س) أو ك س صن وهي دالة الـهيل عند أية نقطة على منـحنى. (29 ص)

الالمشـتقة الثثانيـية second derivative: يُرْـز إليهـا بـ
 الـمشتقة الأولمى لـلـالة. (ص (7)

الأسـاس الطبيـعي Natural base: عدد غير نسـبـي يُرهـز !إليه بالرهـز هـ ويسـاوي Y, VIAYA هقريًا إلى خهس هنـازل عشـرية، ويُنسـب إلي عدد من الاعلهـاء فيُعرف بثابت أويلِ كها يُعرف بالعدد الثنيبيري. (ص 19) إيـجاد الممشتتقة differentiate: القيام بعملية الاشـتقاق.

التتباين variance : قياس لانتشـار قيم الـهتغيّر العشتوائي

الْتفاضل (انلاشتتقاق) differentiation: عملية إيجاد
المششتقة أو دالة الالميل للدالة مـا (ص عV)
الثتوزيـي ألا حتـماني probability distribution: عرض للقيه الـهـهكنة لهتغير عشوائي هتقطع ولاحتهـالاتها الهتعلقة، (ص) (VV)

د
natural exponential الـدالـة ألأسيتّة الططبيعيّة
 natural logarithmic الدألة الثلوغاريتتميـة الطبيـيـيـة
: المالاة العكنـية للد الـة الأسّيـة الطبيعية وتكتب د(س) = دالثة الـميـل gradient function: تسـهـى د'(س) دالة الهميل (اسـم آخر للمشتقة) للمنتحنى ص = د (س) .

دالالة مـتزايـلـة increasing function: دالاة تتزايل قيهتها كلهـا تزايدت قيهـة س، حيـث المهيل موجـب دائهًا . (70 ص)

دالالة متتناقصلة decreasing function: دالة تتـاقص

natural exponential الممعادلة الأسّية الطبيعية :equation :معادلة يكون فيها الهتغيّر أسًا وأسـاسـه هو الأسـاس الطبيعي هـ، وتكتب ص = هــ، (ص natural المعادلة اللوغاريتميـة الطبيعية
: معادلة لوغاريتهية يكون فيها :logarithmic equation أسـاس اللوغاريتم هو الأسـاس الطبيعي هـ، وتكتب

ص = لط س. (ص
مـماس tangent: مستقيم يهسّ الهنتحنى في نقطة واحدة. (ص

شـكر وتقـدير

يتوجه المؤلفون والناشرون بالثشكر الجزيل إلى جميع من منحهم حقوق

 مرجع فإنه يسرهم ذكره في النسـخ القادمة من هذا الكتاب.

Westend61/Getty Images; Jackyenjoyphotography/Getyy Images; Douglas Sacha/Getty Images

